Direct detection of Axion dark matter with

Vijay Dabhi Supervised by Pascal Pralavorio and Fabrice Hubaut

JRJC 2023

OUTLINE

Strong CP problem

- QCD Lagrangian has a CP violating term that is controlled by $\boldsymbol{\theta}$ parameter
- It leads to a neutron electric dipole moment
- Current experiments give upper bound of dN < 10⁻²⁶ e \cdot cm $\cdot \theta$ leading to $|\theta| < 10^{-10}$
- Strong CP problem: The standard model has no explanation for such a small value of $\boldsymbol{\theta}$
- Peccei Quinn mechanism: introduction of a new symmetry which is broken at some energy scale to generate a goldstone boson called 'Axion' to suppress the CP violation

DARK MATTER

- Various cosmological observations of gravitational lensing, galactic rotation curves, CMBR, etc point toward the existence of invisible 'dark matter' that interact very weakly with standard baryonic matter
- The dark matter is five times more abundant than baryonic matter
- The self interaction of dark matter particles is weak -> cold dark matter
- Dark matter density in our galactic halo: O(0.1) GeV/cm3
- Should be made of extremely stable particles that do not decay into standard model particles
- Many candidates for the particle dark matter: WIMPs, **Axions**, etc.

Visible matter in X-ray in pink and matter distribution calculated from lensing in blue. Credits: NASA

AXION PHASE SPACE

AXION MASS RANGE

OUTLINE

□ MADMAX : a dielectric haloscope

 Constructive interference (and resonance) of coherent photon emission at dielectric layers surface (~leaky resonators cavities)

- Axion mass scan : by moving discs with μm precision piezo motors at 4K under 10 T (50 MHz step)
- The new concept of Dielectric Haloscope needs to be validated

The MADMAX Collaboration

Formed in 2017. 10 institutes: French (2), German (6), Spanish (1) and US (1) \rightarrow ~50 people

The MADMAX Collaboration

Experiment location: HERA H1 iron yoke in DESY, Hamburg

Photon REsonator For axiOn in Universe (Prefou) Haloscope

Final experiment design

A layer of butter and garlic that will entice the axions to interact

JRJC 2023

Novel concept

Cutting edge research

The MADMAX Collaboration

Experiment location: HERA H1 iron yoke in DESY, Hamburg

Formed in 2017. 10 institutes: French (2), German (6), Spanish (1) and US (1) $\rightarrow \sim$ 50 people

Experimental Challenges :

- High B-field
- Low Temp. (4 K)
- μm precision for mechanics

Construct several **prototypes** to validate the key technologies :

CB100

P200

OB300

Name	Setup	Goal	Available
CB100	3 fixed disks, $\phi = 100$ mm	RF studies + First physics	2021
P200	1 moveable disk, $\phi = 200 \text{ mm}$	Piezo-motor + mechanics	2021
OB300	3 moveable disks, ϕ = 300 mm	Scan ALP around 100 μeV	2024

Prototypes to probe the region:: ma ~ 80 μeV , f ~ 20 GHz

OUTLINE

P200: data analysis and summary plots

CB100: preliminary data analysis of the physics run at CERN

OB300: Simulations to optimize the boost factor

P200 : testing the piezo motors

- Principle of the measurement: precise control of 200 mm diameter sapphire disk position with three piezo motors
 - Move the motors using a controller
 - Motor positions measured using laser interferometers and tiny mirrors on the disk with precision better than 100 nm
 - Position error Δd = target position (provided to the controller) -2actual position (measured by the interferometer)

P200 : measurement results

- The motors were tested in 2022 at room temperature (DESY), at cryogenic temperatures (CERN), and in magnetic field (CERN MORPURGO)
- I performed some data analysis to produce summary-benchmark plots of the tests

IRIC 2022

➔ Paper in preparation

CB100 experimental run at CERN

Goal: To understand the RF response of the system and perform an ALP search

10 cm Booster Mirror + 3 sapphire disks Taper Wave guide LNA

> CB100 booster prototype

Magnetic field availability was very stable - 95% availability during 21 days of data taking

CB100 experimental run at CERN 2023

The averaged signal observed at the spectrum analyser (blue curve). A Savitzky-Golay filter is applied to the data (purple curve) which is almost superimposed on the blue curve. The top subplot shows the residuals in the data due to noise.

The gaussian function fits very well to the residual. This shows that there is no anomalies/axion signal in the data.

→ Analysis on going ... Paper in preparation

OB300 Booster

The goals of the study:

- 1) Measure the disk planarity,
- 2) Perform simulations to decide on the order and position of the disks to obtain the best boost factor,
- 3) Predict electric field and compare it with measurements.

OB300 : Disk measurement

Planarity of 4 sapphire disks of 300 mm diameter and 1 mm thickness were measured at CPPM with O(1) μ m precision

The planarity scatter plot with ~500 points of measurement. The colors show the variation in the height of the sapphire disk surface. The minmax variation of surface height is ~200 μ m with 52 μ m RMS deviation. All the disks appear to be in a somewhat bowl shape.

OB300 booster geometry

OB300 : boost factor simulation

Simulation using a software package developed by the MADMAX collaboration based on the theoretical paper: arXiv:1906.02677

- Calculate 'Boost Factor' (power from the booster setup compared to the power from just a mirror) by Fourier propagation of EM fields in a given booster geometry
- Starting from an initial distance, the optimizer tries to maximize the boost factor by varying the distances
- First result obtained using ideal flat disks to serve as a benchmark

Initial distance: [7.42, 11.13, 11.13] mm Optimized distance: [7.72, 10.78, 11.13] mm Boost factor peak: 2209

Optimizing the boost factor for 192 combinations of disks and their orientations

Top 8 configurations

Typical distances around 8-11 mm

OUTLINE

Plan for the coming years

Name	setup	Task		
P200	1 moveable disk ϕ 200 mm	Analysis ongoing, a paper in making		
CB100	3 fixed disks $\phi = 100$ mm	Analysing 2023 data, possible experimental run at cold and in magnetic field at CERN 2024		
CB200	4 fixed disks $\phi = 200 \text{ mm}$	Possible experimental run at cold and in magnetic field at CERN 2024		
OB300	3 moveable disks $\phi = 300 \text{ mm}$	Plan to analyse the calibration data a a a a a a a a a a again in December 2023	nd visit DESY 3.	
2021 —		2025	2028	· >
Proto booste CB 100 50 cm	er We are here!!!	Booster inside proto cryostat and 1.6 T magnet (CERN)		Final MADMAX booster inside 10 T magnet
	4 m	n JRJC 2023	4 m	25

Thank you

Backup slides

Disk raw measurements

All the disk faces similar to each other

Disk raw measurements

Déformation 3D grossit x500

Disk 4 face A shape visualized by multiplying the surface height by 500

Disk 1 faces has less deviations in the surface measurement (lower rms values) than disk 2

P200 tests

P200 in cryostat

Booster calibration using the bead pull method

Validation of the simulation method

• Compare the measured electric field of the booster with the simulated one

Shape of the electric field on the receiver side in presence of real disks

Magnet

- European Innovation partners: CEA Saclay and Bilfinger Noell
- FoM: B²A = **100 T²m²**

X [m]

480 MJ!

PQ mechanism

New field: $\Phi = R(t, \mathbf{x}) \exp[i\theta(t, \mathbf{x})]$

The potential favors θ = 0, thus solving the strong CP problem

Original PQ mechanism already disproved, two modified PQ mechanisms are the object of interest for current experiments

Arxiv: 2308.16003

Neutron Electric dipole moment (nEDM)

$\mathsf{H} = -\mathbf{d} \cdot \mathbf{E}$

 $\mathbf{d} = \mathbf{d\sigma}$ is the electric dipole moment, E is electric field d is odd under CP, while E is even

The combined term leads to CP violation

Dielectric Haloscope

In an external magnetic field B_e the axion field a(t) sources an oscillating electric field E_a

 $E_a \cdot \epsilon \sim 10^{-12} \text{ V/}_{\text{m}}$ for $B_e = 10 \text{ T}$

E_a is different in materials with different ε At the surface, E_{\parallel} must be continuous \rightarrow Emission of electromagnetic waves

Power emitted from a single surface: $P/_A = 2.2 \cdot 10^{-27} \frac{W}{m^2} C_{a\gamma} \left(\frac{B}{10 \text{ T}}\right)^2 \longrightarrow \mathcal{O}(C_{a\gamma}) = 1$

DIELECTRIC HALOSCOPE (1)

Power emitted at a vacuum-to-perfect-conductor interface:

$$\frac{P_{sig}^{\gamma}}{A} = 2 \cdot 2 \times 10^{-27} \frac{\text{W}}{_{\text{JRJC} 2026}^2} \left(\frac{B_e}{10 \text{ T}}\right)^2 C_{a\gamma}^2$$

Axion/ALP searches

Haloscopes	Helioscopes	Lab experiments	
Relic DM axions	Solar axions	Lab produced \checkmark \rightarrow fully controlled setup	
High axion flux	Medium axion flux	Low axion flux	
Model dependent	Mildly model dependent	Model independent	
QCD axion DM [1-1000 μeV] [0.25-250 GHz]	QCD axion / ALP [higher masses up to keV]	ALP	
e.g. MADMAX	e.g. (Baby)IAXO	e.g. ALPS II	

Complementarity between the 3 approaches at the DESY Hub

Sources of axions

Axion scales

