# Jet Calibration in ATLAS Line Delagrange



23/10/2023







# Strong interaction

- strong coupling constant  $\alpha_{\rm S}$
- Quarks and gluons carry colour charge  $\rightarrow$  self-interaction



- They form bound colourless states (hadrons)
- Due to colour confinement, quarks and gluons shower and hadronise immediately into collimated bunches of particles  $\rightarrow$  Jets



## Jets

## Jets represent the shower produced by the hadronisation of a quark or gluon



Courtesy of Louis Ginabat

"Truth" jet

"Reco" jet

- Dominant production at the LHC
- Used either as signal or background in most analyses





# Jet reconstruction

- Goal: Construct jets from the input 4-vectors - calorimeter hits and tracks (data) - simulated particles (mc truth)
  - simulated calorimeter hits and tracks (mc reco)
- Anti- $k_T$  algorithm: sequential jet clustering algorithm of near-by entities, with  $d_{ij} = \min(k_{ti}^{-2}, k_{tj}^{-2}) \frac{\Delta_{ij}}{R^2}$ and deduce the 4-vector of the associated jet





# Jet calibration Goal

- To have the reconstructed 4-vector of the jet matching that of the true 4vector corresponding jet (in data and mc)
- Correct energy and direction of the jet for:
  - Energy lost in the upstream material
  - Energy lost in dead material
  - Non-compensating nature of ATLAS detector
  - Bending of the particles in the magnetic field
  - interaction (pile-up)



- Busy data taking environment resulting from the multiple proton-proton

Derive correction factors to be applied to reconstructed jets in mc and data



# Jet calibration Principle

direction are calibrated.



muon-segment variables.

applied only to data.



# **Residual in situ Calibration**

**GOAL:** Correct the residual differences between data and Monte Carlo, with in situ measurement

**Principle :** Use of the  $p_T$  balance between a jet (probe) and a reference object (ref) Correction factors derived in bins of  $p_T$  and  $\eta$ :



$$\frac{\mathcal{L}_{MC}}{\mathcal{L}_{data}} = \frac{\mathcal{R}_{data}}{\mathcal{R}_{MC}} = \left[\frac{(p_T^{probe})_{reco}}{p_T^{ref}}\right]_{data} / \left[\frac{(p_T^{probe})_{reco}}{p_T^{ref}}\right]_{M}$$

Intercalibration factors

Correction factors (to be applied to data)

 $\eta$ -intercalibration  $\rightarrow$  homogeneity in  $\eta$ 





# $\eta$ -intercalibration

### Using di-jet events



Exemple of an asymmetry distribution. The central value of a gaussian fit is extracted



Dijet Selection for R=0.4:  $\Delta \phi > 2.5$  $p_T^3 / p_T^{avg} < 0.25$ JVT < 0.25



## **Standard Method:**

- probe = jet to calibrate
  - ref = jet in the reference region (central region)

• Asymmetry evaluated in bins of  $p_T^{avg}$ ,  $\eta_{ref}$  and  $\eta_{probe}$ 

$$= \langle \mathscr{R} \rangle = \frac{2 + \langle \mathscr{A} \rangle}{2 - \langle \mathscr{A} \rangle}$$
 intercalibration factors

**Problem : low statistics** 









# $\eta$ -intercalibration

- $\chi^2$  minimisation process



 $S(c_1, \dots, c_N) = \sum_{j=1}^N \sum_{i=1}^{j-1} \left( \frac{1}{\Delta \langle \mathcal{R}_{ij} \rangle} \left( c_i \langle \mathcal{R}_{ij} \rangle - c_j \right) \right)^2 + X(c_1, \dots, c_N)$ 

# • In each bin of $p_T^{avg} \rightarrow$ **Over-constrained system** : *N intercalibration factors to determined* < $\sim \frac{N^2 - N}{2}$ constraints

## The correction factors are the ratio of the inter-calibration factors (mc/data)



# Global $\chi^2$ /NDF

- The intercalibration factors are determined by a  $\chi^2$  minimisation process:  $S(c_1, \ldots, c_N) = \sum_{j=1}^N \sum_{i=1}^{j-1} \left( \frac{1}{\Delta \langle \mathscr{R}_{ij} \rangle} (c_i \langle \mathscr{R}_{ij} \rangle c_j) \right)^2 + X(c_1, \ldots, c_N)$  A global  $\chi^2$ /NDF can be calculated for each  $p_T$  bin:
  - $\chi^{2} = \sum_{j=1}^{N} \sum_{i=1}^{j-1} \left( \frac{1}{\Delta \langle \mathcal{R}_{ij} \rangle} \left( c_{i} \langle \mathcal{R}_{ij} \rangle c_{j} \right) \right)^{2}$  $NDF = \frac{N_{\eta bins}^2 - N_{\eta bins}}{2} - N_{dropped} - N_{\eta bins}$ # of constraints

# of intercalibration factors

The global  $\chi^2$ /NDF provides information on the compatibility between the constraints



12

Global  $\chi^2$ /NDF

• The global  $\chi^2$ /NDF study allows to target the highly contributing bins for studies









# **Bootstrap Method**

- Evaluate the statistical uncertainty of a measurement
- Using a set of replicas of the nominal dataset, derived by introducing Poisson perturbations
- Analysing each replica, the same way as the nominal dataset
- Extract the statistical uncertainty and correlations from the measurements
- The fluctuations that generate the bootstrap replicas are deterministic



 $85 < p_T < 115$ , working with 100 replicas

14

# **Bootstrap Method**

- Correlation Matrix, determined here for the first time
- Very important for quantitative data/theory comparisons e.g. for jet cross-sections
- (Anti-)correlations: in the MM, an asymmetry bin constrains two intercalibration factors

 $\rightarrow$  currently not taken into account in the computation of the uncertainties

 Could improve the calibration, useful for many studies involving jets







## What's next Jet substructure and $\alpha_S$

- Usually: Jet production cross section
- Lund Jet Plane: a modern way to explore the jet substructure, sensitive to  $\alpha_{S}$
- Re-clustering the jet, entering the "emission" coordinates in a  $(\ln(k_T), \ln(1/\Delta))$  plane
- Broad range of scale covered to test the running of  $\alpha_{\rm S}$ , + Normalisation sensitive to  $\alpha_{S}$

scale with Run-2 data



From 1807.04758 Factorisation of QCD effects

## **GOAL** : Evaluation of $\alpha_{S}$ and test of its running as a function of the energy



# What's next FCC-ee

- FCC-ee : 91km of circumference, ~2040,  $e^+e^-$  collisions at 4 center of mass energies between 90 and 365 GeV. Very high statistics, very clean environment.  $\rightarrow$  **Contraints on the detectors** : minimising the systematics to take advantage of the high statistic
- Prospective studies of the Lund Jet Plane in a FCC-ee environment with mc simulations

Lund jet plane study, to improve the determination of  $\alpha_S$ 



## FUTURE CIRCULAR COLLIDER

**GOAL : Optimise the detector design (energy resolution, granularity, etc) for the** 



17

Thank you for your attention!