

NDAMENTALES

Gamma angle measurement in $B^- \to D^0 (\xrightarrow{\bullet} K_s \pi^+ \pi^- \pi^0) K^-$ (Generalized GGSZ)

Jessy DANIEL, **Université Clermont-Auvergne, LPC**

Journées de Rencontre des Jeunes Chercheurs Saint-Jean-de-Monts – 22-28 October 2023

Discrete Symmetries (CPT)

Parity: is an event seen in a mirror as realistic as the original one?
 Time reversal: watching the film of an event backwards results in a realistic event?

• Charge conjugation: can we distinguish matter from antimatter?

Lewis Carroll (1871) "Through the Looking-Glass, and What Alice Found There"

Louis Pasteur and the molecular chirality (1847-1856) [polarized light & crystallography] **Discrete Symmetries (CPT)**

Parity: is an event seen in a mirror as realistic as the original one?
 Time reversal: watching the film of an event backwards results in a realistic event?

Charge conjugation: can we distinguish matter from antimatter?

BigBang : Préfou / Anti-Préfou symmetrically created
 Now : No More Antimatter : WHY ?

- BigBang : Matter / Antimatter symmetrically created
 Now : No More Antimatter : WHY ?
- Sakharov Conditions (1967)

B

- CP Violation Observed in K mesons (1964, Cronin-Fitch)
- In B mesons (2000, B factories : BaBar, Belle)
- In D mesons (2019, LHCb)

 BUT CP violation in standard model not sufficient to explain the absence of antimatter --> Is there a New Physics Beyond The Standard Model ?

The CKM Matrix, the Unitary Triangle and y angle

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- CKM Matrix describes <u>transition between quarks</u> through weak interaction -> main CP contribution to SM in quark sector
- Its elements can be determined from experiment
 -> Parameterization with 4 independent parameters

The CKM Matrix, the Unitary Triangle and y angle

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- CKM Matrix describes <u>transition between quarks</u> through weak interaction -> main CP contribution to SM in quark sector
- Its elements can be determined from experiment
 -> Parameterization with 4 independent parameters
- Goal : Sensitivity to BSM effects if Unitarity triangle different in direct and indirect measurements
- The current state of γ measurements (<u>CONF-2022-003-001</u>) :

Direct : $\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$ -> Tree Level = Standard Candle Indirect : $\gamma = (65.66^{+0.9}_{-2.65})^{\circ}$ -> Loops / Pinguin diagrams

 $\gamma \equiv arg(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}) \equiv arg(\bar{\rho} + i\bar{\eta}) = \text{CKM Matrix complex phase} = \frac{\text{The parameter to access CPV !}}{V_{cd}V_{cb}^*}$

The CKM Matrix, the Unitary Triangle and y angle

Unitary Equations and triangle :

 $\sum_{i=1}^{3} V_{ji} V_{ki}^{*} = \sum_{i=1}^{3} V_{ij} V_{ik}^{*} = 0$

Couplings	NP loop	Scales (in TeV) probed by	
	order	B_d mixing	B_s mixing
$ C_{ij} = V_{ti}V_{tj}^* $	tree level	17	19
(CKM-like)	one loop	1.4	1.5
$ C_{ij} = 1$	tree level	2×10^3	5×10^2
(no hierarchy)	one loop	2×10^2	40

-> Test of global validity of the CKM formalism in tree level diagrams

Phys.Rev.D 89 (2014) 3, 033016

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- CKM Matrix describes <u>transition between quarks</u> through weak interaction -> main CP contribution to SM in quark sector
- Its elements can be determined from experiment
 -> Parameterization with 4 independent parameters
- Goal : Sensitivity to BSM effects if Unitarity triangle different in direct and indirect measurements
- The current state of γ measurements (<u>CONF-2022-003-001</u>) :

Direct : $\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$ -> Tree Level = Standard Candle Indirect : $\gamma = (65.66^{+0.9}_{-2.65})^{\circ}$ -> Loops / Pinguin diagrams

<u>According to CKMfitter group</u>, a 1° precision on direct measurement <u>test</u>
 <u>SM up to dozens of TeV</u> energy scales

 -> Only possible in association of multiple analysis

LHCb-CONF-2022-003

LHCb ¥ combination

Further details of the statistical procedure can be found in JHEP 12 (2021) 141

- Most precise determination of *γ* from a single experiment
- Uncertainties still in the regime of statistical dominance -> Systematic uncertainties account for ~1.4°
- Most precise measurement from a single analysis : <u>arxiv:2010.08483</u> $B^{\pm} \rightarrow D^{0}K^{\pm}$ with $D^{0} \rightarrow K_{s}^{0}\pi^{+}\pi^{-}$

Measuring y angle

• Relative weak phase γ measured in the interference between $b \rightarrow c\bar{u}s$ and $b \rightarrow u\bar{c}s$ transitions by amplitude modulation

Measuring y angle

В

- Relative weak phase $_{\mathbb{Y}}$ measured in the interference between $b \to c\bar{u}s$ and $b \to u\bar{c}s$ transitions by amplitude modulation
- -> Possible analogy with Young slits with a slit thinner than the other

The Amplitude A_B for the decay from B^+ to final state (at a given point in the D decay phase-space \mathcal{D}) is :

$$A_B = \bar{A} + r_B e^{i(\delta_B + \gamma)} A$$
 (1)

-> δ_B = strong-phase difference between $B \to D^0 K$ and $B \to \overline{D^0} K$ -> A (resp \overline{A}) = Amplitudes for $D^0 \to f$ (resp $\overline{D^0} \to f$) -> $r_B = \frac{|A_{B\to \overline{D^0}K}|}{|A_{B\to D^0K}|} \longrightarrow$ Give sensibility to Υ

The Amplitude A_B for the decay from B^+ to final state (at a given point in the D decay phase-space D) is :

$$A_B = \bar{A} + r_B e^{i(\delta_B + \gamma)} A$$
 (1)

-> δ_B = strong-phase difference between $B \to D^0 K$ and $B \to \overline{D^0} K$ -> A (resp \overline{A}) = Amplitudes for $D^0 \to f$ (resp $\overline{D^0} \to f$) -> $r_B = \frac{|A_{B\to \overline{D^0}K}|}{|A_{B\to D^0K}|} \longrightarrow$ Give sensibility to Y

The probability density for a decay at a point in \mathbb{D} : $P_B = |A_B|^2 = |\bar{A}|^2 + r_B^2 |A|^2 + 2r_B \Re[\bar{A}^* A e^{i(\delta_B + \gamma)}]$ As $\bar{A}^* A = |\bar{A}| |A| e^{i\Delta\delta_D}$ we obtain : $P_B = \bar{P} + r_B^2 P + 2\sqrt{P\bar{P}} [x_- C - y_- S]$ (2) With : • $y_{\pm} = r_B sin(\delta_B \pm \gamma)$ • $C = cos(\Delta\delta_D)$ • $P = |A|^2$ • $x_{\pm} = r_B cos(\delta_B \pm \gamma)$ • $S = sin(\Delta\delta_D)$ • $\bar{P} = |\bar{A}|^2$

Similar formalism for B^- with : $A\leftrightarrow \bar{A}$ and $\gamma\leftrightarrow -\gamma$

Generalized GGSZ formalism

γ measurement depends on Δδ_D, the strong phase difference between $D^0 \to f(\delta_D)$ and $\overline{D^0} \to f(\delta_{\overline{D}})$ Varies on Phase–Space of the 4-body decay $D^0 \to K_s^0 \pi^+ \pi^- \pi^0$

I use a similar method to the one in <u>JHEP 01 (2019) 82</u> (Belle, from Resmi P.K thesis)

-> Binned map of strong phase from <u>JHEP 10 (2018)178</u> (Resmi P.K, J. Libby, S. Malde, & G. Wilkinson-CLEO-c)

+ BES III measurements up to come !

Bin	Bin region	$m_{ m L}$	$m_{ m U}$
		(GeV/c^2)	(GeV/c^2)
1	${ m m}_{\pi^+\pi^-\pi^0}pprox { m m}_\omega$	0.762	0.802
2	$\mathrm{m}_{K^0_S\pi^-}pprox\mathrm{m}_{K^{st-}}$ &	0.790	0.994
	${ m m}_{\pi^+\pi^0}pprox{ m m}_{ ho^+}$	0.610	0.960
3	$\mathbf{m}_{K^0_S\pi^+} pprox \mathbf{m}_{K^{*+}}$ &	0.790	0.994
	$m_{\pi^-\pi^0}pprox m_{ ho^-}$	0.610	0.960
4	$\mathrm{m}_{K^0_S\pi^-}pprox\mathrm{m}_{K^{st-1}}$	0.790	0.994
5	$\mathrm{m}_{K^0_S\pi^+}pprox\mathrm{m}_{K^{*+}}$	0.790	0.994
6	$\mathrm{m}_{K^0_S\pi^0}pprox\mathrm{m}_{K^{st 0}}$	0.790	0.994
7	$m_{\pi^+\pi^0}pprox m_{ ho^+}$	0.610	0.960
8	$\mathrm{m}_{\pi^-\pi^0}pprox\mathrm{m}_{ ho^-}$	0.610	0.960
9	Remainder	-	-

Generalized GGSZ formalism

 $_{\gamma}$ measurement depends on Δ δ_D , the strong phase difference between $D^0 \to f(\delta_D)$ and $\overline{D^0} \to f(\delta_{\overline{D}})$

Varies on Phase-Space of the 4-body decay $D^0 \to K_s^0 \pi^+ \pi^- \pi^0$

$$\Gamma_i^- = h\left(K_i + r_B^2 \overline{K}_i + 2\sqrt{K_i \overline{K}_i}(c_i x_- + s_i y_-)\right)$$
$$\Gamma_i^+ = h\left(\overline{K}_i + r_B^2 K_i + 2\sqrt{K_i \overline{K}_i}(c_i x_+ - s_i y_+)\right)$$

I use a similar method to the one in <u>JHEP 01 (2019) 82</u> (Belle, from Resmi P.K thesis) -> Binned map of strong phase from <u>JHEP 10 (2018) 178</u> (Resmi P.K, J. Libby, S. Malde, & G. Wilkinson-CLEO-c)

+ BES III measurements up to come !

- K_i and \bar{K}_i are fractions of D^0/\bar{D}^0 in bin i
- h is a normalisation factor

•
$$r_B = \frac{|A_{B \to D^0 K}|}{|A_{B \to D^0 K}|}$$

• $c_i = \frac{\int_{\mathcal{D}_i} |A| |\bar{A}| \bar{C} d\mathcal{D}}{\sqrt{\int_{\mathcal{D}_i} |A|^2 d\mathcal{D} \int_{\mathcal{D}_i} |\bar{A}|^2 d\mathcal{D}}}$
• $x_{\pm} = r_B \cos(\delta_B \pm \gamma)$
• $y_{\pm} = r_B \sin(\delta_B \pm \gamma)$

Bin	Bin region	$m_{ m L}$	$m_{ m U}$
		(GeV/c^2)	(GeV/c^2)
1	$m_{\pi^+\pi^-\pi^0}pprox m_\omega$	0.762	0.802
2	$\mathrm{m}_{K^0_S\pi^-}pprox\mathrm{m}_{K^{st-}}$ &	0.790	0.994
	${ m m}_{\pi^+\pi^0}pprox{ m m}_{ ho^+}$	0.610	0.960
3	$\mathrm{m}_{K^0_S\pi^+}pprox\mathrm{m}_{K^{*+}}$ &	0.790	0.994
	${ m m}_{\pi^-\pi^0}pprox { m m}_{ ho^-}$	0.610	0.960
4	$\mathrm{m}_{K^0_S\pi^-}pprox\mathrm{m}_{K^{st-1}}$	0.790	0.994
5	$\mathrm{m}_{K^0_S\pi^+}pprox\mathrm{m}_{K^{*+}}$	0.790	0.994
6	$\mathrm{m}_{K^0_S\pi^0}pprox\mathrm{m}_{K^{*0}}$	0.790	0.994
7	$m_{\pi^+\pi^0}pprox m_{ ho^+}$	0.610	0.960
8	$\mathrm{m}_{\pi^-\pi^0}pprox\mathrm{m}_{ ho^-}$	0.610	0.960
9	Remainder	-	-

Generalized GGSZ formalism

γ measurement depends on Δδ_D, the strong phase difference between $D^0 \to f(\delta_D)$ and $\overline{D^0} \to f(\delta_{\overline{D}})$

Varies on Phase–Space of the 4-body decay $D^0 \to K_s^0 \pi^+ \pi^- \pi^0$ $\Gamma_i^- = h \left(K_i + r_B^2 \overline{K}_i + 2\sqrt{K_i \overline{K}_i} (c_i x_- + s_i y_-) \right)$ $\Gamma_i^+ = h \left(\overline{K}_i + r_B^2 K_i + 2\sqrt{K_i \overline{K}_i} (c_i x_+ - s_i y_+) \right)$

I use a similar method to the one in <u>JHEP 01 (2019) 82</u> (Belle, from Resmi P.K thesis)

- -> Binned map of strong phase from JHEP 10 (2018)178 (Resmi P.K, J. Libby, S. Malde, & G. Wilkinson-CLEO-c) + BES III measurements up to come !
 - K_i and \bar{K}_i are fractions of D^0/\bar{D}^0 in bin i
 - h is a normalisation factor

- Goal of the Selection : Keep the maximum efficiency on Signal while putting aside most of the Combinatorial and Physical background
- Use of the reference mode $B^{\pm} \rightarrow D^0 \pi^{\pm}$ that is topologically identical, statistically more interesting and less sensible to CP asymmetry

 $BR(B^{\pm} \to D^0 \pi^{\pm}) \approx 12.7 \times BR(B^{\pm} \to D^0 K^{\pm})$

- Goal of the Selection : Keep the maximum efficiency on Signal while putting aside most of the Combinatorial and Physical background
- Use of the reference mode $B^{\pm} \rightarrow D^0 \pi^{\pm}$ that is topologically identical, statistically more interesting and less sensible to CP asymmetry

 $BR(B^{\pm} \to D^0 \pi^{\pm}) \approx 12.7 \times BR(B^{\pm} \to D^0 K^{\pm})$

- Selection based on Uni or multi-dimensional dicriminating variables by comparing simulated Signal and background-only areas in DATA :
 - First MVA : MLP method on geometrical and topological variables from D decay

•

- Unidimensional cuts on K^os, π^{o} and D^o masses -> Optimized by maximization of the significance
- Second MVA: MLP method on geometrical and topological variables from B decay

- Goal of the Selection : Keep the maximum efficiency on Signal while putting aside most of the Combinatorial and Physical background
- Use of the reference mode $B^{\pm} \rightarrow D^0 \pi^{\pm}$ that is topologically identical, statistically more interesting and less sensible to CP asymmetry

 $BR(B^{\pm} \to D^0 \pi^{\pm}) \approx 12.7 \times BR(B^{\pm} \to D^0 K^{\pm})$

- Selection based on Uni or multi-dimensional dicriminating variables by comparing simulated Signal and background-only areas in DATA :
 - First MVA : MLP method on geometrical and topological variables from D decay

•

- Unidimensional cuts on K^os, π^{o} and D^o masses -> Optimized by maximization of the significance
- Second MVA: MLP method on geometrical and topological variables from B decay

- To limit misidentification of the bachelor track, we discriminate using a PID Likelihood Difference
 - ~70.7% signal efficiency / ~2.6% misidentification efficiency for $B \to D^0 K^{\pm}$
 - For MC, Δ LL(K) variable corrected with PIDcorr tool

- To limit misidentification of the bachelor track, we discriminate using a PID Likelihood Difference
 - ~70.7% signal efficiency / ~2.6% misidentification efficiency for $B \to D^0 K^{\pm}$
 - For MC, $\Delta LL(K)$ variable corrected with PIDcorr tool

+ MVA to choose best candidates among multiple candidates (several selected candidates for a given collision)

10³ to 10⁴ rejection factor on background

Background Study

A complete study of physical background has been processed, using MC samples Here is a list of studied backgrounds. Non-negligeable ones are surrounded for $B^{\pm} \to D^0 \pi^{\pm}$ and $B \to D^0 K^{\pm}$

 $B^{\pm} \rightarrow D^{*0} [\rightarrow D^0 (\rightarrow K_s \pi \pi) \pi^0] \pi^{\pm}$ $B^{\pm} \to D^{*0} [\to D^0 (\to K_s \pi \pi) \gamma] \pi^{\pm}$ $B^{\pm} \rightarrow D^{*0} [\rightarrow D^0 (\rightarrow K_s \pi \pi) \pi^0] K^{\pm}$ $B^{\pm} \rightarrow D^{*0} [\rightarrow D^0 (\rightarrow K_s \pi \pi) \gamma] K^{\pm}$ $B^{\pm} \rightarrow D^{*0} \rightarrow D^{0} \rightarrow D^{0} \rightarrow K_s \pi \pi) \pi^0 \rho^{\pm} \rightarrow \pi^{\pm} \pi^0$ $B^{\pm} \rightarrow D^{*0} [\rightarrow D^0 (\rightarrow K_s \pi \pi) \gamma] \rho^{\pm} (\rightarrow \pi^{\pm} \pi^0)$ $B^{\pm} \rightarrow D^0 (\rightarrow K_s \pi \pi) \rho^{\pm} (\rightarrow \pi^{\pm} \pi^0)$ $B^{\pm} \rightarrow D^0 (\rightarrow K_s \pi \pi) K^{*\pm} (\rightarrow K^{\pm} \pi^0)$ $B^0_s \to D^0 (\to K_s \pi \pi \pi^0) K^{\mp} \pi^{\pm}$

$$B^{\pm} \rightarrow D^{*0} [\rightarrow D^0 (\rightarrow K_s \pi \pi \pi^0) \pi^0] \pi^{\pm}$$

$$B^{\pm} \rightarrow D^{*0} [\rightarrow D^0 (\rightarrow K_s \pi \pi \pi^0) \gamma] \pi^{\pm}$$

$$B^{\pm} \rightarrow D^{*0} [\rightarrow D^0 (\rightarrow K_s \pi \pi \pi^0) \pi^0] K$$

$$B^{\pm} \rightarrow D^{*0} [\rightarrow D^0 (\rightarrow K_s \pi \pi \pi^0) \gamma] K$$

 $B^{\pm} \to D^{*0} [\to D^0 (\to K_s \pi \pi \pi^0) \pi^0] \rho^{\pm} (\to \pi^{\pm} \pi^0)$ $B^{\pm} \to D^{*0} [\to D^0 (\to K_s \pi \pi \pi^0) \gamma] \rho^{\pm} (\to \pi^{\pm} \pi^0)$ $B^{\pm} \to D^{*0} [\to D^0 (\to K_s \pi \pi \pi^0) \pi^0] K^{*\pm} (\to K \pi^0)$

$$B^{\pm} \to D^{*0} [\to D^0 (\to K_s \pi \pi \pi^0) \gamma] K^{*\pm} (\to K \pi^0)$$

$$B^{\pm} \to D^{0} (\to K_{s} \pi \pi \pi^{0}) \rho^{\pm} (\to \pi^{\pm} \pi^{0})$$
$$B^{\pm} \to D^{0} (\to K_{s} \pi \pi \pi^{0}) K^{*\pm} (\to K^{\pm} \pi^{0})$$

 $B^0 \rightarrow D^{*\pm} [\rightarrow D^0 (\rightarrow K_s \pi \pi \pi^0) \pi^{\pm}] \pi^{\pm}$

 $B^0
ightarrow D^{*\pm} [
ightarrow D^0 (
ightarrow K_s \pi \pi \pi^0) \pi^{\pm}] K$

- Additional study has been made in K_s^0 and D^0 sidebands, limiting impact of K_s -less and charm-less backgrounds to less than 0.15% and 0.8% on the signal respectively.

B[±] mass fit

- CP Violation = one of the condition to explain why matter took advantage on antimatter in the universe
- CKM formalism is one of the main contribution to CP violation in the Standard Model
- A precise direct measurement of y angle = standard candle of SM -> to be compared to indirect measurements with potential New Physics
- After Selection and Nominal Fit, next step is to extract physical parameters as y angle from the Signal I obtained

- CP Violation = one of the condition to explain why matter took advantage on antimatter in the universe
- CKM formalism is one of the main contribution to CP violation in the Standard Model
- A precise direct measurement of y angle = standard candle of SM -> to be compared to indirect measurements with potential New Physics
- After Selection and Nominal Fit, next step is to extract physical parameters as ${\ensuremath{_{\rm Y}}}$ angle from the Signal I obtained
- <u>Perspectives :</u>
 - Twice the Belle statistics -> We expect a statistical error of ~16-21°
 - Participate to an Amplitude Analysis of D^o decay
 - Continuous $\Delta \delta_D$ map -> redo γ measurement !
 - Measure $D^0 \rightarrow K^{*\pm} \rho^{\mp}$ branching ratio -> Not measured since Mark III ... 30 years ago !

- CP Violation = one of the condition to explain why matter took advantage on antimatter in the universe
- CKM formalism is one of the main contribution to CP violation in the Standard Model
- A precise direct measurement of y angle = standard candle of SM -> to be compared to indirect measurements with potential New Physics
- After Selection and Nominal Fit, next step is to extract physical parameters as ${}_{\rm Y}$ angle from the Signal I obtained
- <u>Perspectives :</u>
 - Twice the Belle statistics -> We expect a statistical error of ~16-21°
 - Participate to an Amplitude Analysis of D^o decay
 - Continuous $\Delta \delta_D$ map -> redo γ measurement !
 - Measure $D^0 \to K^{*\pm} \rho^{\mp}$ branching ratio -> Not measured since Mark III ... 30 years ago !

+ Work on Scintillating-Fiber LHCb tracker (SciFi) for Run 3 : Temperature monitoring, Geometry description in reconstruction algorithm, fine time-alignment, etc

- CP Violation = one of the condition to explain why matter took advantage on antimatter in the universe
- CKM formalism is one of the main contribution to CP violation in the Standard Model
- A precise direct measurement of _V angle = standard candle of SM -> to be compared to indirect measurements with potential New Physics
- After Selection and Nominal Fit, next step is to extract physical parameters as ${}_{\rm Y}$ angle from the Signal I obtained
- <u>Perspectives</u> :
 - Twice the Belle statistics -> We expect a statistical error of ~16-21°
 - Participate to an Amplitude Analysis of D^o decay
 - Continuous $\Delta \delta_D$ map -> redo γ measurement !
 - Measure $D^0 \to K^{*\pm} \rho^{\mp}$ branching ratio -> Not measured since Mark III ... 30 years ago !

BACKUP

SciFi Tracker at LHCb

The decay and formalism

One can then deduce N_i^{\pm} , the measured yields (cf paper <u>LHCb-PAPER-2020-019</u>):

$$\begin{cases} N_{i,DK}^{-} = h_{DK}^{-} [F_i + (r_B^{DK})^2 \bar{F}_i + 2\sqrt{F_i \bar{F}_i} (c_i x_-^{DK} + s_i y_-^{DK})] \\ N_{i,DK}^{+} = h_{DK}^{+} [\bar{F}_i + (r_B^{DK})^2 F_i + 2\sqrt{F_i \bar{F}_i} (c_i x_+^{DK} - s_i y_+^{DK})] \\ N_{i,D\pi}^{-} = h_{D\pi}^{-} [F_i + (r_B^{D\pi})^2 \bar{F}_i + 2\sqrt{F_i \bar{F}_i} (c_i x_-^{D\pi} + s_i y_-^{D\pi})] \\ N_{i,D\pi}^{+} = h_{D\pi}^{+} [\bar{F}_i + (r_B^{D\pi})^2 F_i + 2\sqrt{F_i \bar{F}_i} (c_i x_+^{D\pi} - s_i y_+^{D\pi})] \end{cases}$$

•
$$F_i = \frac{\int_{\mathcal{D}_i} P\eta d\mathcal{D}}{\sum_j \int_{\mathcal{D}_j} P\eta d\mathcal{D}}$$

- η = efficiency at a given point in phase-space
- Hypothesis : $F_i^{DK} = F_i^{D\pi}$

 $F_i^{DK} = F_i^{D\pi}$ if :

- \circ $B \rightarrow D\pi$ and $B \rightarrow DK$ have a similar selection and then a similar efficiency mapping through D
- PID cut efficiency is the same for all bins
- Multiplicity is the same for all bins
- \circ N_i^{\pm} is migration-corrected

The decay and formalism

One can then deduce N_i^{\pm} , the measured yields (cf paper <u>LHCb-PAPER-2020-019</u>):

$$\begin{cases} N_{i,DK}^{-} = h_{DK}^{-} [F_i + (r_B^{DK})^2 \bar{F}_i + 2\sqrt{F_i \bar{F}_i} (c_i x_-^{DK} + s_i y_-^{DK})] \\ N_{i,DK}^{+} = h_{DK}^{+} [\bar{F}_i + (r_B^{DK})^2 F_i + 2\sqrt{F_i \bar{F}_i} (c_i x_+^{DK} - s_i y_+^{DK})] \\ N_{i,D\pi}^{-} = h_{D\pi}^{-} [F_i + (r_B^{D\pi})^2 \bar{F}_i + 2\sqrt{F_i \bar{F}_i} (c_i x_-^{D\pi} + s_i y_-^{D\pi})] \\ N_{i,D\pi}^{+} = h_{D\pi}^{+} [\bar{F}_i + (r_B^{D\pi})^2 F_i + 2\sqrt{F_i \bar{F}_i} (c_i x_+^{D\pi} - s_i y_+^{D\pi})] \end{cases}$$

•
$$F_i = \frac{\int_{\mathcal{D}_i} P\eta d\mathcal{D}}{\sum_j \int_{\mathcal{D}_j} P\eta d\mathcal{D}}$$

- η = efficiency at a given point in phase-space
- Hypothesis : $F_i^{DK} = F_i^{D\pi}$
- \implies c_i and s_i are taken from Cleo-c paper <u>JHEP 10 (2018) 178</u>
- $\implies N_i^{\pm}$ will be measured in LHCb (current work)
- $\implies x_{\pm}$ and r_B are the parameters we want to extract
- \implies F_i are extracted from $B \rightarrow D\pi$ thanks to a simultaneous fit

Thanks to the common value of γ , one can use this alternate parameterization :

MVA 1			
Nom de la variable	Description		
Log_DOPT	Impulsion transverse de D0		
Log_DDIRA	Alignement de l'impulsion reconstruite et de la direction de vol du candidat D		
Log_D0FDchi2	Signification statistique de la distance du vertex du candidat reconstruit D par rapport au Primary Vertex		
Log_D0maxDOCA	Distance maximum des plus courtes approches pour toutes les paires possibles de particules filles de D		
Log_Delta_KsD_ZERR	Distance entre les candidats D et Ks le long de l'axe du détecteur (le candidat Ks doit être détecté plus loin que le candidat D)		
Log_KsD_DIRA	Alignement de l'impulsion reconstruite et de la direction de vol du candidat Ks.		
DProbChi2Vtx	Qualité du Vertex du D		
DdaughtMinsIP	Minimum des paramètres d'impact des particules filles de D		
Log_KSLTSignif	Signification statistique de la durée de vie (longue) du candidat Ks.		
	Débarrasse des paires de pions du Primary Vertex se faisant passer pour des Ks		
Log_ET_gam_Moy	Energie transverse moyenne des photons issus du candidat π^0		
IDgamE	Probabilité que les candidats photons ne soient pas des électrons		
IDgamH	Probabilité que les candidats photons ne soient pas des hadrons		
Log_KS_BPVIPCHI2MinDaught	Minimum des paramètres d'impact des particules filles de Ks ^o		
DdaughtMinPT	Minimum des moments transverses des pions chargés issus du D		

MVA 2			
Nom de la variable	Description		
cosThetaHely	Angle d'hélicité entre D et B		
CosD_bachT_xy	Angle ϑ _{HvsD} entre D et la trace célibataire Η (Π΄ ou Κ΄) dans le plan transverse		
BDIRA	Alignement de l'impulsion reconstruite et de la direction de vol du candidat B		
B_PTasy_cone15	Asymétrie de l'impulsion transverse de B dans un cône de 1.5 rad		
The_MLP_D	Variable de sortie du MVA 1		
log_B_IPchi2	Log de la Signification du paramètre d'impact du candidat reconstruit B par rapport au PV		
log_DiffZ_DvsB_Err	Log de la distance entre les candidats D et B le long de l'axe du détecteur		
BProbChi2Vtx	Qualité du vertex du B		
BFDChi2	Signification statistique de la distance du vertex du candidat reconstruit B par rapport au PV		
bachPT	Impulsion transverse du bachelor track		