Journées rencontres jeunes chercheur 2023

Session : Beyond the Standard Model

Search for a new leptonically decaying neutral vector boson in association with missing transverse energy in proton–proton collisions at \sqrt{s} =13 TeV with the ATLAS detector

Laboratoire d'Annecy de physique des particules Supervisor : Tetiana Hryn'ova

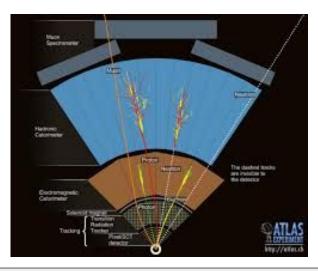
1 - The **ATLAS** experiment at the **LHC**

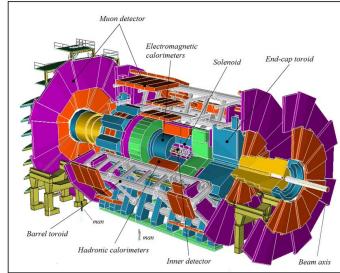
1 - The ATLAS experiment at the LHC

★ Large Hadron Collider (LHC)

- Proton collider (and heavy ion)
 - > $\sqrt{s} = 13.6 \text{ TeV}$
 - Collision rate = 40 MHz
- Localisation : Geneva
 - > 4 collision points
 - LHCb, Alice, CMS et ATLAS!

				LHC			н	IL-LHC
Run 1		Ru	n 2		Run	13		Run 4 - 5
1	LS1	13 TeV	ETS	LS2	13.6 TeV	EVETS	LS3	13.6 - 14 TeV
8 TeV	eplice consolidation button collimators R2E project		oyokmit interaction regione	Diodes Consolidation LUU Installation Civil Eng. P1-P5	alot bears	inner Stplet	HL-LHC installation	
2012	2013 2014	2015 2016	2017 2018	2019 2020 2021	1022 2023	2024 2025	2026 2027 2028	2029 2040
% nominal Lumi	experiment beam pipes	nominal Luna	2 x nominal Lumi	ATLAS - CMS upgrade phase / ALICE - LHCb upgrade	2 x nominal Lun	<u>a</u>	ATLAS - CMS	5 to 7.5 x nominal Lumi
30 fb ⁻¹		-	190 fb ⁻¹			450 fb1		Integrated 3000 fb ummosity 4000 fb
10.00	AL EQUIPMENT		PROTOTYPES		CONSTRUCTIO		INSTALLATION & COMM.	PHYSICS

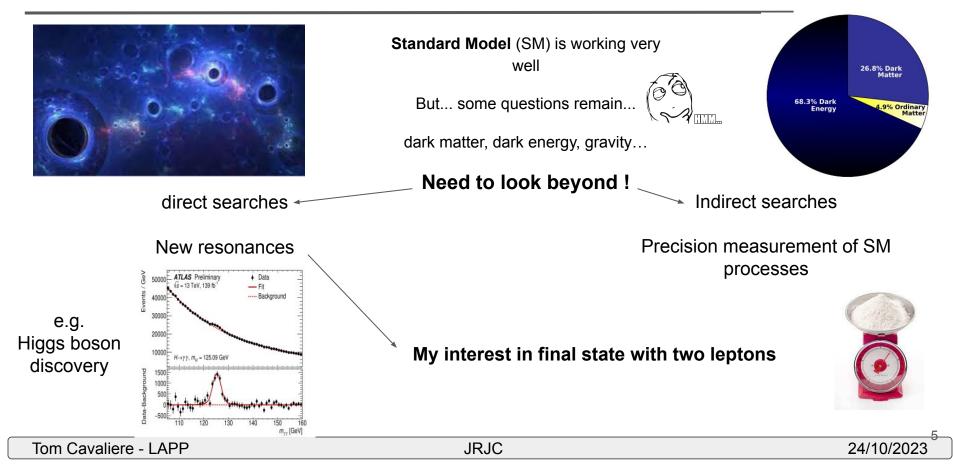




1 - The ATLAS experiment at the LHC

★ <u>A Toroidal LHC ApparatuS</u> (ATLAS)

- General purpose detector
- Composed of layers of sub-dectectors :
 - Tracker : position, charge, momentum
 - Calorimeter (electromagnetic and hadronic) : energy, position
 - > Muon spectrometer : Momentum, position

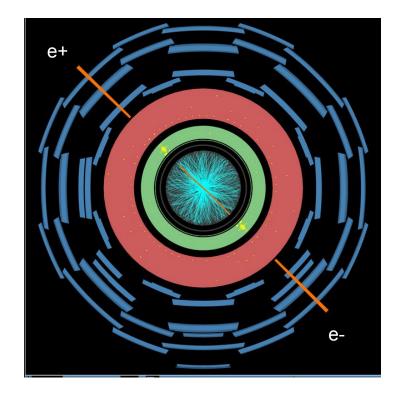




24/10/2023

 weakly interactive particle like neutrinos are not directly detected

Tom Cavaliere - LAPP

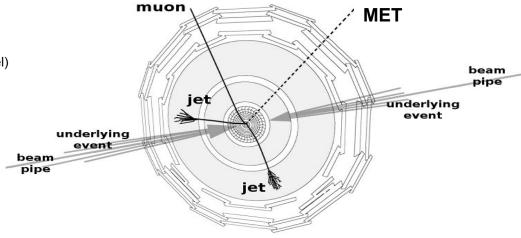


★ From inclusive to exclusive search

Theoretical motivation :

- New Z' gauge boson in BSM theories.
 - Additional SU(2) or U(1) gauge symmetry.
 - TeV scale.

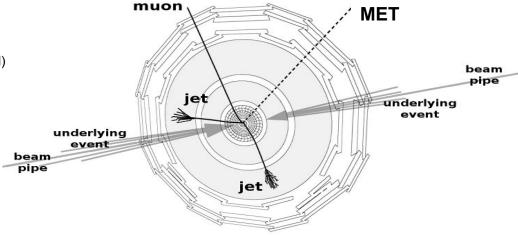
24/10/2023

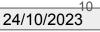

- ★ From inclusive to exclusive search
 - 5 Local significance [\sigma] ATLAS √s = 13 TeV, 139 fb⁻¹ 0-width resonance ee channel --- µµ channel - Il channel -5 2×10³ 10^{3} 3×10³ 3×10² m_x [GeV]

- Inclusive search : pp -> ee
 - ➤ No discovery found by ATLAS and CMS.

- ★ From inclusive to exclusive search
- My focus : Exclusive search : pp -> ll + X
 - Reduce SM backgrounds + better sensitivity
 - Channels investigated at LAPP :
 - X = dark matter particles (Z'+**MET** channel)

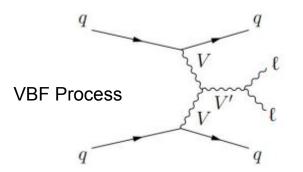
ATLAS detector

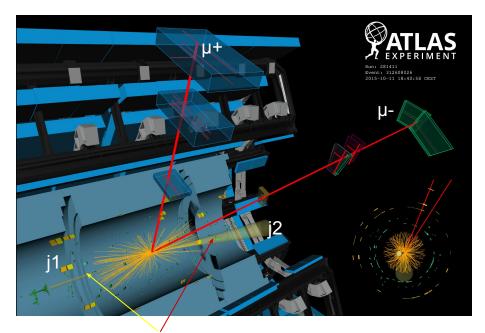




- ★ From inclusive to exclusive search
- My focus : Exclusive search : pp -> ll + X
 - Reduce SM backgrounds + better sensitivity
 - Channels investigated at LAPP :
 - X = dark matter particles (Z'+**MET** channel)

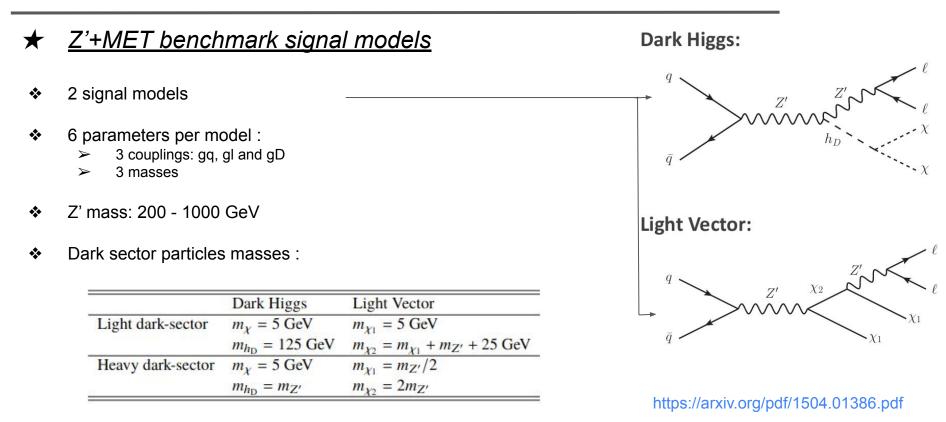
ATLAS detector





★ From inclusive to exclusive search

- My focus : Exclusive search : pp -> ll + X
 - Reduce SM backgrounds + better sensitivity
 - Channels investigated at LAPP :
 - X = dark matter particles (Z'+MET channel)
 - X = 2 back-to-back jets (VBF channel)



forward jets

Tom Cavaliere - LAPP

JRJC

Tom Cavaliere - LAPP

JRJC

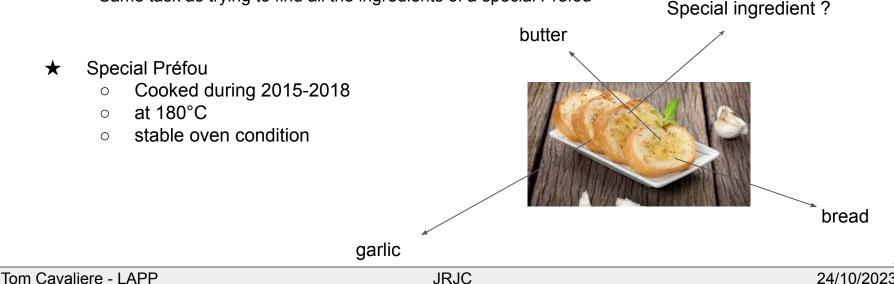
24/10/2023

Analysis strategy

Search in the dilepton invariant mass spectrum resonances with the run 2 dataset

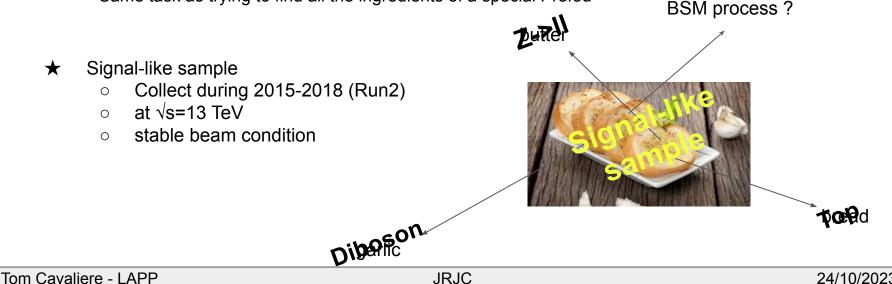
- * Selections to look for interesting events :
 - 2 identified oppositely charged leptons (electrons or muons) \succ
 - Large missing transverse energy (> 55 GeV) \succ
 - b-jet veto \succ . . .

 \succ



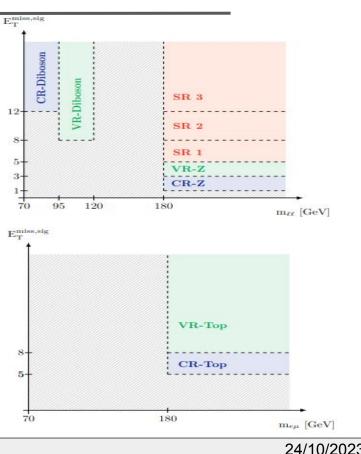
★ Analysis strategy

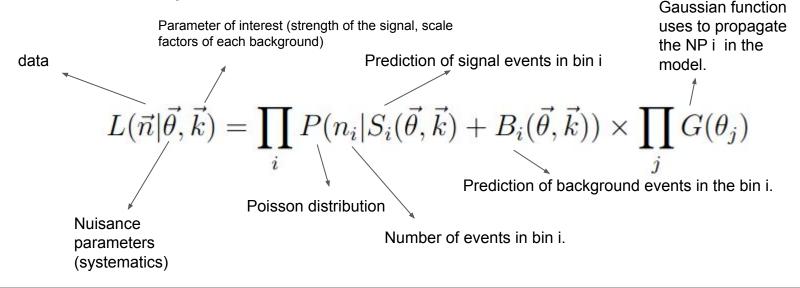
Search in the dilepton invariant mass spectrum resonances with the run 2 dataset


- Test compatibility between SM processes and data
 - Identified the dominant backgrounds
 - > Same task as trying to find all the ingredients of a special Préfou

★ Analysis strategy

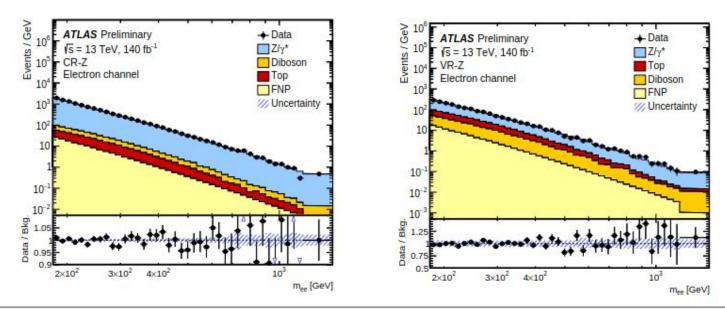
Search in the dilepton invariant mass spectrum resonances with the run 2 dataset


- Test compatibility between SM processes and data
 - Identified the dominant backgrounds
 - > Same task as trying to find all the ingredients of a special Préfou

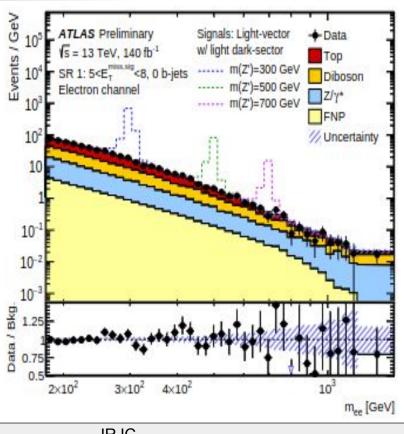

★ Analysis strategy

- Generated signal samples for Z' mass spreading from 200 GeV to 1 TeV.
 - Add selection on m_ll > 180 GeV
 - Using MC samples every 100 GeV + morphed samples to have a continuous scan

- ★ <u>Analysis strategy</u>
- Signal Region (SR) :
 - Signal enriched region
 - search for an excess over the SM backgrounds.
- Control Region (CR) :
 - > Region use to improve the modeling of a background.
 - SR-like selection
 - Pure
- ✤ Validation Region (VRs) :
 - Regions use to validate the background estimation
 - SR-like selection
 - Pure
 - \rightarrow difficult task !


- ★ <u>Statistical Model</u>
- Profile Likelihood function
 - Use to estimate the parameter of interests while taking into account uncertainty introduced by nuisance parameters.

Tom Cavaliere - LAPP


- ★ <u>Results</u>
- Background modeling :
 - > Z->II CR and VR post fit result in the electron channel

Tom Cavaliere - LAPP

★ <u>Results</u>

Signal region post fit :

Tom Cavaliere - LAPP

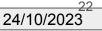
JRJC

- ★ <u>Results</u>
- Signal region fit :

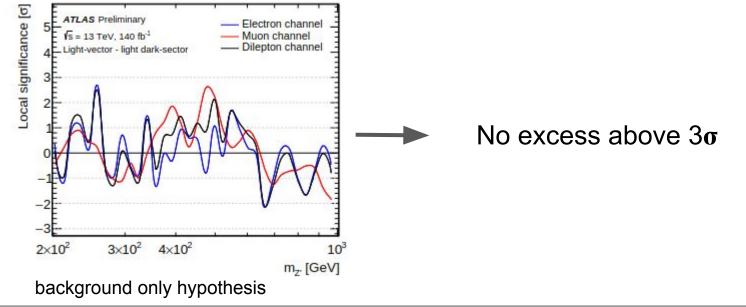
	CR-Z	CR-Top $(e\mu)$	CR-Diboson	SR-bin1	SR-bin2	SR-bin3
Observed	125359	45003	1161	6508	2340	801
Total Background	125360 ± 350	45010 ± 210	1158 ± 33	6490 ± 80	2370 ± 40	786 ± 20
Drell-Yan	118700 ± 800	62.7 ± 2.0	60 ± 4	1100 ± 140	58 ± 4	14.9 ± 0.7
Тор	2420 ± 180	40600 ± 500	47 ± 5	3180 ± 210	1450 ± 90	379 ± 26
Diboson	2780 ± 140	3400 ± 170	1036 ± 34	1880 ± 90	750 ± 35	350 ± 15
Fakes	1500 ± 600	900 ± 400	15.5 ± 2.5	330 ± 180	110 ± 70	41 ± 26
LVM LDS, $m_{Z'} = 245 \text{ GeV}$	0 ± 0	0 ± 0	0 ± 0	1 ± 8	1 ± 7	1 ± 7

Very good agreement with the Standard Model

Tom	Caval	iere -	LAPP
-----	-------	--------	------


24/10/2023

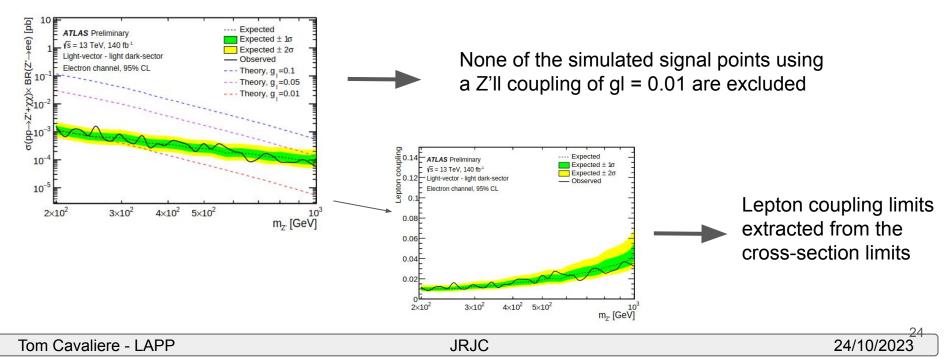
- ★ <u>Results</u>
- Signal region fit :


	CR-Z	CR-Top $(e\mu)$	CR-Diboson	SR-bin1	SR-bin2	SR-bin3
Observed	125359	45003	1161	6508	2340	801
Total Background	125360 ± 350	45010 ± 210	1158 ± 33	6490 ± 80	2370 ± 40	786 ± 20
Drell-Yan	118700 ± 800	62.7 ± 2.0	60 ± 4	1100 ± 140	58 ± 4	14.9 ± 0.7
Тор	2420 ± 180	40600 ± 500	47 ± 5	3180 ± 210	1450 ± 90	379 ± 26
Diboson	2780 ± 140	3400 ± 170	1036 ± 34	1880 ± 90	750 ± 35	350 ± 15
Fakes	1500 ± 600	900 ± 400	15.5 ± 2.5	330 ± 180	110 ± 70	41 ± 26
LVM LDS, $m_{Z'} = 245$ GeV	0 ± 0	0 ± 0	0 ± 0	1 ± 8	1 ± 7	1 ± 7

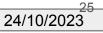
Very good agreement with the Standard Model

Tom	Cava	liere -	LAPP
-----	------	---------	------

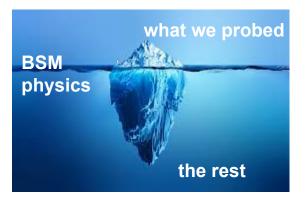
- ★ <u>Results</u>
- Local significance



Tom Cavaliere - LAPP



Limits on the Z' cross-section as a function of mZ'



3 - Conclusion

3 - Conclusion

- A search for a new leptonically decaying neutral vector boson in association with missing transverse energy in proton–proton collisions at √s=13 TeV with the ATLAS detector has been presented.
- No excess found over the SM backgrounds
 - New limits set (cross-section and coupling)
 - An order of magnitude better than the inclusive search!

Tom	Cava	liere -	LAPP
-----	------	---------	------

Variable	SR-bin 1	SR-bin 2	SR-bin 3
$E_{\rm T}^{\rm miss, sig}$	5 – 8	8 - 12	> 12
$E_{\rm T}^{\rm miss}$ [GeV]	> 55	_	
Num. <i>b</i> -jets (85% WP)	0	0	0
m_{ll} [GeV]	> 180	> 180	> 180

SR BKGS ESTIMATIONS

	SR-bin 1		SR-l	SR-bin 2		SR-bin 3	
	ee	$\mu\mu$	ee	$\mu\mu$	ee	$\mu\mu$	
$Z/\gamma^* \to \ell \ell$	14.5%	18.6%	1.4%	4.5%	0.4%	3.5%	
$Z/\gamma^* \to \tau \tau$	0.8%	0.5%	1.1%	0.6%	1.9%	0.8%	
$V + \gamma$	1.8%	2.0%	0.6%	0.6%	0.9%	0.5%	
tī	44.2%	41.2%	53.0%	52.9%	39.0%	42.9%	
Single-top	10.3%	9.7%	14.0%	13.0%	14.7%	12.6%	
$VV \rightarrow \ell \ell \nu \nu$	26.3%	25.5%	27.2%	25.3%	38.0%	33.9%	
VV (other)	2.1%	2.5%	2.6%	3.1%	5.1%	5.8%	

binwidth =
$$\frac{\log(x_{max}) - \log(x_{min})}{n_{bins}}.$$

 $E_{\rm T}^{\rm miss, sig}$

$$E_{\rm T}^{\rm miss, sig} = \frac{|\mathbf{p}_{\rm T}^{\rm miss}|}{\sqrt{\sigma_{\rm L}^2 (1 - \rho_{\rm LT}^2)}}$$

σL is the longitudinal component of the total transverse momentum resolution for all objects in the even pLT is the correlation factor between the parallel and perpendicular components of the transverse momentum resolution for each object

	CR-Z	CR-Top	CR-Diboson	SRs
Channel	ee, μμ	eμ	<i>ее</i> , µµ	<i>ee</i> , μμ
m_{ll} [GeV]	> 180	> 180	[70, 95]	> 180
Num. b-jets	0		0	0
$E_{\mathrm{T}}^{\mathrm{miss,sig}}$	1–3	5-8	> 12	5-8, 8-12, > 12

CONTROL REGION PURITY

	Channel	Z+jets	Тор	Diboson	Fakes
CR-Z	ee	93.7%	2.1%	2.1%	2.0%
	$\mu\mu$	95.5%	2.2%	2.2%	0.2%
CR-Top	eμ	0.1%	90.9%	7.4%	1.6%
CR-Diboson	ee	5.8%	4.2%	87.3%	2.7%
	μμ	6.1%	5.6%	87.5%	0.8%

	VR-Z	VR-Top	VR-Diboson	SRs
Channel	ee, µµ	eμ	ее, µµ	<i>ее</i> , µµ
<i>m</i> ₁₁ [GeV]	> 180	> 180	95-120	> 180
Num. b-jets	0	0	0	0
$E_{\mathrm{T}}^{\mathrm{miss,sig}}$	3–5	> 8	> 8	5-8, 8-12, >12