Introduction to Hadronic Physics

Journées de Rencontre des Jeunes Chercheurs Saint-Jean-De-Monts

Batoul Diab - 27/10/2023

Building blocks of matter

The building blocks of matter are quarks grouped in protons and neutrons

Weak force

Electromagnetic force

S

Strong force

The strong force binds quarks together to form protons and neutrons

Force carriers: gluons

The residual strong force binds the nucleus

- **Charge:** 3 color charges (red, green, blue)
- **Mediators:** 8 gluons, massless and color charged
- **Interaction with:** color charged objects (quarks, gluons)
- Range and strength: very strong, very short
- **Coupling "constant"**: α_s , describes the strength of the interaction

- The theory that describes the strong interaction is **Quantum ChromoDynamics** (QCD)

$\alpha_{\rm s}$ varies with the energy scale

At low energy: $\alpha_{\rm s} \rightarrow 1$, quarks are strongly bound

Hadrons are colorless objects

Baryons Charge: red + blue + green

Mesons Charge: color + anti-color

What happens if we try to separate a $q\bar{q}$ pair?

Gluon tube between quarks elongates

Strong force gets stronger with the distance

new quark-antiquark pairs are created

Imagine you have this QCD Lagrangian: $\mathcal{L} = -\frac{1}{2} \operatorname{Tr}[F_{\mu\nu}F^{\mu\nu}] + \sum_{i=1}^{N_f} \bar{\psi}_i(x)(\mathcal{D} + m_i)\psi_i(x) , \ \mathcal{D} = \gamma^m u[\partial_\mu - igA_\mu(x)]$

Lattice QCD breaks up spacetime into a grid: Quarks are lattice sites Gluons are links connecting sites

Only considers nearest-neighbor interactions

Continuum: infinitely large lattice of infinitely close sites

Advantages	Disadvanta
Great predictive power	Need supercom
Rigorous calculation	Gives numbe
systematically improved	

ges

puters

ers

$\alpha_{\rm s}$ varies with the energy scale

At high energy: $\alpha_s \rightarrow 0$, quarks are weakly coupled

Perturbative QCD

Perturbative expansion in α_s of an observable f can be written as: $f = \alpha_{s} f_{1} + \alpha_{s}^{2} f_{2} + \alpha_{s}^{3} f_{3} + \dots$

In high-energy regimes, $\alpha_{s} \ll 1$

Only the first, two or three terms are calculated The others are assumed to be negligible

Cross section of a generic final state X in pp col

The Factorization theorem separates the perturbative and non-perturbative parts of a process:

ollisions:
$$\sigma_{pp \to X} = \sum_{i,j} \int dx_1 dx_2 f_i(x_1) f_j(x_2) \hat{\sigma}_{ij \to X}(x_1, x_1)$$

Evidence for quarks

Let's fire electrons at protons and observed how the electrons bounced off:

Observation:

If an electron comes closer than a femtometer, the electron bounces off or passes through the proton

Conclusion: Point-like charges inside the proton

Deep inelastic scattering

Evidence for color

The flavor production depends on the energy, for $\sqrt{s} > 2m_b \sim 10$ GeV, u, d, s, c and bare produced:

$$R = 3\left[\left(\frac{2}{3}\right)^2 + \left(\frac{-1}{3}\right)^2 + \left(\frac{-1}{3}\right)^2 + \left(\frac{-1}{3}\right)^2 + \left(\frac{2}{3}\right)^2 + \left(\frac{-1}{3}\right)^2\right] =$$

e^+e^- are perfect tools:

no hadron in the initial state \rightarrow very clear environment

Main process: $e^+e^- \rightarrow Z^0/\gamma^* \rightarrow q\bar{q}$

 e^+e^- collider, $\sqrt{s} = 12-47$ GeV 3-jet event, JADE detector at PETRA, DESY

e^+e^- are perfect tools:

 e^+e^- collider, $\sqrt{s} = 200 \text{ GeV}$ 4-jet event, ALEPH detector at LEP-I

Matter can exist in different forms

- Low temperature and density \rightarrow hadronic matter
- High temperature and/or density \rightarrow Quark Gluon Plasma
- Reproduced at colliders with heavy-ion collisions

Heavy-ion collisions

Time

Ultra-relativistic heavy nuclei

Initial nucleon-nucleon collisions

Quark Gluon Plasma

Hadronization

Kinetic freeze-out

Initial nucleonnucleon collisions

Heavy flavor production

Heavy-ion collisions

Time

Initial nucleon-nucleon

Quark Gluon Plasma

Hadronization

Kinetic freeze-out

Probes of the QGP

QGP not "directly" observed (lasts only a few fm/c!)

Recipe: Several probes Good reference system

Batoul Diab - JRJC 2023

Probes of the QGP: Quarkonia

 J/ψ is made of $c\bar{c}$

The QGP screens the interaction between the c quarks

Less J/ψ in PbPb than pp

QGP thermometer!

Batoul Diab - JRJC 2023

Probes of the QGP: Jets

Jets are the experimental signatures of partons

Momentum conservation \rightarrow dijet events

In the QGP, the jets traverse different lengths

Probes of the QGP: Jets

Jets are the experimental signatures of partons

Momentum conservation \rightarrow dijet events

In the QGP, the jets traverse different lengths

Jets lose energy when they interact with the QGP

Jet Quenching!

Batoul Diab - JRJC 2023

Elliptic flow: $v_2 = average over all particles of cos(2\phi)$

- Heavy-ion collisions produce tiny droplets of relativistic fluid
 - Collectivity \equiv emitted particle exhibit a common property

Anisotropic flow

Triangular flow: $v_3 = average over all particles of cos(3\phi)$

- Heavy-ion collisions produce tiny droplets of relativistic fluid
 - Collectivity \equiv emitted particle exhibit a common property

Anisotropic flow

Quadrangular flow: $v_4 = average over all particles of cos(4\phi)$

- Heavy-ion collisions produce tiny droplets of relativistic fluid
 - Collectivity \equiv emitted particle exhibit a common property

Anisotropic flow

Hadronic physics studies the structure, the properties and the interactions of hadrons

Vast domain : theoretical and experimental

