Updates on XeLab project

a R&D platform of Xe double phase TPC

presented by Yongyu Pan – LPNHE on behalf of the whole XeLab team (LPNHE, Subatech)

GDR DUPhy, Aussois

June 23rd, 2023

Dual phase time projection chamber (TPC)

- S1: Prompt scintillation light
- S2: Secondary scintillation light induced by ionized electrons
- Position reconstruction: drift time + PMT pattern
- Using S2/S1 to discriminate electronic recoil (ER) and nuclear recoil (NR)

- Lab

GDR DUPhy

XENON evolution

	XENON10	XENON100	XENON1T	XENONnT	DARWIN
Operation period	2005-2007	2008-2016	2012-2019	2020-2026	2030
Xenon mass	14 kg Xe target	62 kg Xe target	2 t Xe target	5.9 t active Xe 8.5 t total Xe	~40 t active Xe ~50 t total Xe
Height Diameter	15 cm 20 cm	30 cm 30 cm	96 cm 97 cm	148 cm 133 cm	~2.6 m ~2.6 m

Xe^{-Lab}

Problems in XENONnT:

Guarantee the transparency of the electrodes \Rightarrow parallel wires

- \Rightarrow Sagging (electrostatic force + gravity) \Rightarrow perpendicular wires on the electrodes (Anode & gate)
- non-uniform detector response
- micro electric discharges (hot-spots)

Anode perpendicular wires X-Y-position [mm]

Parallel wires

Sagging effect

Perpendicular wires

XeLab, R&D meant for DARWIN

- First site in France working with a Xe dual-phase TPC
- Funded by IN2P3 with local support by LPNHE and Subatech

Novel electrodes

Advantages:

Minimize mechanical distortion

- \rightarrow possibility of reducing the
 - gate \leftrightarrow anode distance (E_{ext} \uparrow)
- \rightarrow better S2 resolution
- \rightarrow More uniform signal response over x, y

Challenges:

Optical transparency might be reduced (mesh pattern)

XeLab

7

TPC under development

Process & Instrumentation Diagram (P&ID)

- Lab

GDR DUPhy

∞ XeLab

Process & Instrumentation Diagram (P&ID)

- Lab

യ XeLab

Process & Instrumentation Diagram (P&ID)

- Lab

XeLab

Installation in LPNHE

TPC designed by Subatech

Xenon purification circuit and the "manifold" network (Designed by LPNHE and constructed by DATE company)

> @Campus Jussieu, LPNHE, Salle 12-13-SS03

GDR DUPhy

Data Acquisition System (DAQ)

Xe^{-Lab}

Hardwares:

- ADCs: CAEN v1720, v1724, v1730 (up to 8 modules per optical link in daisy chain)
 - 8 channels
 - Dynamic range: 2.0 Vpp
 - Resolution: 12-bit
 - Sampling rate: 250 MS/s
- Optical links: CAEN a2818, a3818, a4818 (CONET-to-USB)

From 5 PMTs (+ amplification)

Data Acquisition System (DAQ)

Xe-Lab

_ _

Readout software:

- Based on XenoDAQ (Zurich) https://github.com/Physik-Institut-UZH/XenoDAQ/
- Compatible with CAEN devices
- Graphical interface
- Zero Length Encoding
- Saves data in ROOT, .txt or binary
- Status: Implementation of a4818 communications + bug hunting

CDAQ -- DAQ for XeLab (single)

CDAQ -- DAQ for XeLab (single)

GDR DUPhy

Slow control

Goal 1: Insure safety of people and Xenon

--> solution: use hardware solution and a PLC (Programmable logic controller) to check the critical sensors and valves automatically (e.g. input of LN₂)

Goal 2: Follow and understand the behavior of system

--> solution: monitoring software (database, display, alarms etc) can integrate other instrumentation (temperature sensors, power supplies, pressure monitor, disk space etc)

Slow control

Programmable logic controller (PLC) - Revolution Pi (Raspberry Pi based open source tools)

Slow control

• Parameter monitoring

• Other functions

<u>Plots MPlot Scatter Sys Log Runs Users Alarms Config Control LogBook Cams</u>

Current hardware setups

High voltage supply for PMTs

High voltage supply for electrodes

DAQ system

XeLab

Next steps

July 2023

September 2023

- Installation of the entire cryogenic system
- Installation of mReStoX

- 3 month of commissioning (leaks, cooling, filling and recovery)
- Freezing the material choice for the electrodes (pillars)
- TPC design almost completed then its construction will start

Thank you for your attention!

GDR DUPhy

Back up slides

Process & Instrumentation Diagram (P&ID)

- Lab

Integration TPC / cryostat

Xelab: Electrons / TPC model

Xe^{-Lab}

Integration of the electron drift model in the 3D electrostatic model.

Response Function of the TPC , to use with Garfield for photon emission : possible interpolation of the electron exit position at interface.

Geometry of the TPC electrodes.

Electrons Release grid in LXe

E-field with wire electrodes (1mm pitch , 0.1mm wire)

Top View : Electrons Release grid in LXe

Full Electron Drift path in LXe