

Sub-GeV dark matter searches with EDELWEISS & CRYOSEL

Elsa Guy on behalf of the EDELWEISS collaboration

EDELWEISS Sub-GeV program

→ Sub-GeV : challenging search area → LV : use ionization to discriminate ER/NR/HO (Ricochet + J. Billard's talk) → HV : use NTL amplification of phonon resolution to resolve single e^+/h^- pairs

Direct detection with EDELWEISS

Direct detection with EDELWEISS

HV - NTL amplified Ge detectors

 \rightarrow RED30 (Ge-NTD), σ = 0.53 e⁻ by applying 78V on a 33g Ge bolometer [PRL 125, 141401 (2020)] @LSM

→ Toward single e^{-}/h^{+} pair sensitivity in Ge → Competitive DM- e^{-} & DP limits

6

Different kinds of phonons and different sensors

Primary phonons

Short mean free path

In general, **do** not reach sensor

Additional NTL phonons : primary + ballistic production along field lines

When applying an electric field :

 \rightarrow primaries at the end of field lines detectable in TES

phonon sensor

ballistic phonons) Detectable in

thermistance (as in RED30)

Ballistic phonons (from decay of primary phonons)

Long mean free path

Detectable in TES

TES sensor

Ge-NTD sensor

7

NbSi TES athermal phonon sensor

- → NbSi2O9 w/ NbSi TES heat sensor (detect ballistic + primary phonons)
- ightarrow 200g Ge bolometer at LSM
- \rightarrow ionization signal: Al electrodes lithographed on top and bottom surfaces

- \rightarrow Some HO reduction wrt RED30 & its NTD :
- x100 improvement wrt previous EDW Migdal limits \rightarrow [PRD 106 062004 (2022)]

But NbSi209 events still not affected by NTL boost : $15V \rightarrow 66V$

 \rightarrow HO background is still the main limitation !

Tagging NTL phonons ?

 \rightarrow Conclusion of <u>PRD 106 062004</u> (2022) : detecting athermal **ballistic** phonons **does not** get rid of HO events

How can the **presence of charge** be tagged?

- Charge read-out via electrode? \rightarrow presently limited to σ -10 e⁻ (c.f. Ricochet)
- As they accelerate in the E field, charges emit NTL phonons (3):

 \rightarrow we can selectively detect some of these phonons if NTL phonons can be "localized" in a sensor with some position dependence (i.e. **not ballistic**) : phonons must either have **short mean free paths**, or can be very efficiently absorbed by the nearby sensor

Tagging NTL phonons ?

→ Experimental confirmation : new <u>arXiv:2303.02067</u>

 \rightarrow Electrode geometry makes possible to identify charged events occurring right in the volume facing the sensor (center)

Tagging NTL phonons ?

→ Clear signal of extra phonon in TES component (excess in inner part of the _ film) associated with NTL phonons emitted in this volume (center)

→ Tagging this component **rejects HO events**! Opens the possibility of a NTL phonon- based charge tag : **CRYOSEL**?

Outer NbSi half

Bottom Al grid

electrode

Inner NbSi

half

CRYOSEL project

NbSi superconductor \rightarrow Reduce HO -> tag production of charges 1200 square (Ω) 1000 \rightarrow keep NTD thermistance as a reliable heat sensor 800 600 \rightarrow new sensor design: **SSED** 400 "Superconducting Single Electron Device" 200 sensitive to the production of a single e⁻ 10 0 ionization heat sensor (NTD) \rightarrow 40g Ge detector, $\sigma_{\rm phonon}$ = 20 eV, 200 V bias, sensor heat signal ionization signal **SSED** signal Al electrode 2 mm diameter

SSED

⁵⁰ 60x10⁻³

30 40

20 T (K)

CRYOSEL project

- Mean energy to create one e⁻/h⁺ pair in Ge,
 c ≈ 3 eV (ER)
- Use Luke boost to discretize the charges & amplify the energy deposited by single charge to energies that can be detected
- At 200V, $E_{heat}^{=} 3 \times (1 + 200/3) = 203 \text{ eV}$, want $\sigma = 20 \text{ eV}$ to be sensitive to a single e^{-}/h^{+} pair $\rightarrow 5\sigma$ threshold at 100 eV
- <u>Need:</u> A detector that sustains high voltage, a good heat resolution, a low SSED threshold (single charge) for HO veto.

Transition observed in first prototype

SSED triggering efficiency

- 5σ threshold **1.250 kΩ** <u>Three datasets :</u>
- From RUN109 10.37 keV
- From RUN109 1.3 keV
- From RUN108 10.37 keV

Limitations in threshold characterization :

- Only two exploitable characteristic peaks Bias and E_{recoil} are intrinsically linked because of Luke effect
- \rightarrow Low bias, low field, no triggering ?
- \rightarrow Low bias, bad charge collection
- \rightarrow High bias (1.3 keV data) better collection & lower threshold

<u>Next step :</u>

- LASER probing
- \rightarrow Allows to tune pulse energy at any operating temperature and bias

Conclusion and perspective

- With this first fully operational CRYOSEL prototype we have been able to :
 - \rightarrow First confirmation that SSED behaves as expected,
 - \rightarrow First characterization of the new SSED sensor,
 - \rightarrow Results that will allow useful inputs to further improve CRYOSEL design
- Current step : pulsed laser to tune pulse energy and probe transition at any bias or temperature,
- Next step is the arrival of new prototypes with enhanced phonon efficiency at lower temperature
- Test of final prototype in 2024 in BINGO cryostat @ LSM, physics run

Thank you for your attention !