New results from the CUPID-Mo experiment

Toby Dixon on behalf of the CUPID-Mo collaboration

IJCLab/ Université Paris-Saclay/ CNRS

June 21 2023

0 uetaeta decay

- Two-neutrino double beta decay (2
 uetaeta) rare SM process
- Neutrinoless double beta decay $(0\nu\beta\beta)$ can probe Majorana nature of neutrinos,

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-2}$$

- Lepton number violation, clear evidence of BSM physics
- For $0\nu\beta\beta$:

$$(T_{1/2})^{-1} = G \times \underbrace{g_A^4 |\mathcal{M}|^2}_{\text{nuclear}} \times \underbrace{\frac{\langle m_{\beta\beta} \rangle^2}{\langle m_e^2}}_{\text{m}_e^2} + \text{higher order}$$

ullet Monoenergetic peak at the total energy of the decay ${\cal Q}_{\beta\beta}$

From CUORE to CUPID

- \bullet Bolometers 1 powerful tool to study 0 $\nu\beta\beta$
- CUORE stably operates 988 TeO₂ bolometers
- \bullet Background dominated by α particles
- \bullet CUPID will remove α background using Lithium Molybdate (LMO) bolometers

The CUPID-Mo experiment

- \bullet First demonstrator experiment of this technique using Lithium Molbydate (LMO) enriched in $^{100}{\rm Mo}$
- 20 LMO bolometers + 20 Ge Light Detectors (LDs)
- Operated in EDELWEISS cryostat (LSM,France) in 2019-2020
- \bullet Performance close to the CUPID goals energy resolution, crystal radio-purity and α particle rejection

CUPID-Mo Analysis channels

- 1. *Main* $0\nu\beta\beta$ analysis
- 2. Information on backgrounds for CUPID
- 3. $2\nu\beta\beta$ studies to constrain nuclear models and help solve the problem of " g_A quenching"
- 4. Other Beyond Standard Model (BSM) searches

0 uetaeta analysis

Limit on $0\nu\beta\beta$ half-life

- After unblinding 0 events observed in ROI
- I eads to a limit.

$${\cal T}^{0
u}_{1/2}(^{100}\,{
m Mo})>1.8 imes 10^{24}~{
m yrs}$$
 90% c.i.

• Under light Majorana neutrino exchange model:

 $\langle m_{\beta\beta} \rangle < 280 - 490 \text{ meV}$ ⁸⁰⁰ سوم ³⁸ سوم CUPID-Mo CUPID-0 NEMO-3 MAJORANA Demonstrator CUORE-0 + Cuoricino GERDA 600 EXO-200 CUORE Kaml AND-ZEN 500 400 300 200 100 0 10^{2} 10³ 10 Isotopic Exposure [kg × yr]

Nuclear matrix elements

- \bullet Interpretation of $0\nu\beta\beta$ experiments relies on nuclear physics calculations
- Currently values only known with very limited precision

$$(T_{1/2})^{-1} \propto |M|^2 g_{A,\text{eff}}^4$$
 (1)

- \bullet Models generally tuned with ${\cal T}_{1/2}$ for $2\nu\beta\beta$ to ground state
- Additional experimental data is needed to test the models and study the possible "quenching of g_A "
- We perform analysis to extract:
 - 1. Half-life to ground and excited states
 - 2. Information on spectral shape: novel experimental observables based on an improved description of $2\nu\beta\beta$ decay

Decays to excited states

- $\beta\beta$ accompanied by γ , often have energy deposit in multiple detectors
- \bullet Simultaneous fit to the γ lines for various patterns of energy deposition
- One example fit shown

Phys.Rev.C 107 (2023) 2, 025503

Decays to excited states

• Bayesian analysis including systematics leads to:

$$T_{1/2}(2
u o 0^+_1) = 7.5 \pm 0.8 \; ({
m stat.})^{+0.4}_{-0.3} \; ({
m syst.}) \; imes 10^{20} \; {
m yrs}$$

And the most stringent limits on other processes

• Extract
$$M_{2
u}=\sqrt{1/(T_{1/2} imes G))}$$

Additional information to test the nuclear models

	11120
Experiment	0.143 ± 0.008
Shell model (bare operator) ²	0.395
Shell (effective operator) ²	0.090
IBM-2 ³	0.595
QRPA ⁴	0.185

²PRC 105, 034312 (2022) ³PRC 91, 034304 (2015 ⁴PRC 91, 054309 (2015 Mal

2 uetaeta spectrum

- CUPID-Mo background suppression leads to very clean $2
 u\beta\beta$ spectrum
- Almost background free spectra in range 1-3 MeV
- $> 1 imes 10^6 \ 2 \overline{
 u} eta eta$ events

Experimental spectrum

CUPID-Mo Background model

- \bullet To exploit the $2\nu\beta\beta$ spectrum a background model is needed
- Data fit to sum of MC simulations
- Features of experimental data well reconstructed
- Important inputs to CUPID background budget measured

The lowest ever background index in a bolometric $0\nu\beta\beta$ experiment

$2\nu\beta\beta$ decay description

 Spectral shape is proportional to products of nuclear matrix elements (NME)

$$\frac{d\Gamma}{dE} \propto \frac{1}{4} |M_{GT}^{K} + M_{L}^{GT}|^{2} + \frac{1}{12} |M_{K}^{GT} - M_{L}^{GT}|^{2}$$
(2)

$$M_{K,L}^{GT} = m_e \sum M_n \frac{E_n - (E_i - E_f)/2}{(E_n - (E_i - E_f)/2)^2 - \varepsilon_{K,L}^2}$$
(3)

- $\varepsilon_{K,L}$ are sums of lepton energies
- Usual approximation to factorise into NME and phase space
 - Negelct $\varepsilon_{K,L}$
 - Replace E_n with a suitably chosen average value (closure approximation)
- Two choices generally employed higher state (HSD) or Single State dominance (SSD) corresponding to different closure energy

Improved $2\nu\beta\beta$ model

PRC 97 (2018) 3, 034315

- Analysis of $2\nu\beta\beta$ decay in the framework of an *improved* $2\nu\beta\beta$ model
- Taylor expansion of the (usually neglected) lepton energy

$$\frac{d\Gamma}{dE} = g_A^{\text{eff4}} |M_{GT-1}|^2 \left(\frac{dG_0}{dE} + \xi_{31}\frac{dG_2}{dE} + \frac{1}{3}\xi_{31}^2\frac{dG_{22}}{dE} + \left(\frac{1}{3}\xi_{31}^2 + \xi_{51}\right)\frac{dG_4}{dE}\right)$$
(4)

• ξ_{31}, ξ_{51} are ratios of NMEs - **novel experimental observables**

$$\xi_{i,1} = M_{GT-i}/M_{GT-1} \tag{5}$$

• G_i phase space factors

а

$2\nu\beta\beta$ half-life measurement

- Fit floating 2 parameters of the spectral shape and the overall normalisation
- Systematic uncertainties related to energy reconstruction, theoretical spectral shape, binning, model choice and selection efficiencies considered
- Compatible result to a fit with single state dominance (SSD) model

$$\mathcal{T}_{1/2} = 7.08 \pm 0.02 \; (ext{stat.}) \pm 0.11 (ext{syst.}) imes 10^{18} \; ext{yrs} \; (68\% \; ext{c.i.})
ight| \qquad (6)$$

The most precise $2\nu\beta\beta$ $T_{1/2}$ measurement in any isotope

$2\nu\beta\beta$ spectral shape

- Extract also the shape factor $\xi_{31}+\xi_{51}$
- \bullet Compare to QRPA theory compatibile with moderately quenched or unquenched g_A
- Mildy incompatible with single state dominance (SSD) theory and fully incompatible with higher state (HSD) hypothesis

Spectral shape - Lorentz Violation and Majorons

- \bullet BSM physics processes can distort the $2\nu\beta\beta$ spectrum
- \bullet Search for $2\nu\beta\beta$ with LV and $0\nu\beta\beta$ with Majorons
- LV parameterised by $a_{of}^{(3)} = C \times \Gamma_{LV} / \Gamma_{SM}$
- ${\scriptstyle \bullet}$ Analysis uses the SSD $2\nu\beta\beta$ model

Strongest limit on LV for "source=detector" despite small exposure

Effect of $2\nu\beta\beta$ shape on BSM searches

- Also perform a new study of the effect of the spectral shape uncertainity (improved model) on the BSM limits
- Analysis of different Majoron models

Process	Reference (SSD) [10 ²¹ yrs]	improved [10 ²¹ yr]
$\beta\beta\chi_0$ (n=1)	2.1	1.8
$\beta\beta\chi_0$ (n=2)	4.5	3.0
$\beta\beta\chi_0(\chi_0)$ (n=3)	1.4	0.6
$\beta\beta\chi_0\chi_0$ (n=7)	0.5	0.2

- 1. The $2\nu\beta\beta$ model is an important systematic for BSM search
- 2. Previously not considered by any experiment

18/21

Measurement of $Q_{\beta\beta}$

- Could be a systematic shift due to difference between γ events used for calibration and $\beta\beta$ signal
- Or some energy loss due to atomic physics as proposed in ⁵
- Bayesian fit to the spectrum floating $Q_{\beta\beta}$
- In-situ measurement useful to rule out systematics shifts
- Result compatible with expected $Q_{\beta\beta}$ position (3034.4(4) keV)

$$Q_{etaeta}=$$
 3038.4 \pm 1.5(stat.) \pm 7(syst.) keV

⁵Nucl. Phys. A 1032 (2023) 122623

Prospects: CUPID

• CUPID

- Next generation 0
 uetaeta experiment
- Builds on the experience of CUPID-Mo and CUORE
- $\bullet \sim 1500 \text{ LMOs}$ and LDs
- Aim to fully cover the inverted hierachy regime
- Tests ongoing at LNGS and LSC

Conclusion

- $1.\$ CUPID-Mo Performance close to CUPID goals
- 2. Lowest ever background index in a bolometric $0\nu\beta\beta$ decay experiment
- 3. New limits and measurements of $\beta\beta$ decays to ground and excited states
- 4. Results of novel analysis of the 2
 uetaeta spectrum shape
- 5. Limits on other BSM processes

Thanks for your attention!

CUPID sensitivity

- 450 kg of LMO
- $T_{1/2} > 1.1 imes 10^{27}$ yr (3 σ)
- $\langle m_{etaeta}
 angle < 12-20$ meV

CUPID sensitivity-2

Improved model fit

- Next look at extracted value of ξ_{31}, ξ_{51}
- We draw 3 main conclusions:
 - 1. A large higher order contribution is needed to fit the data
 - 2. It is not well constrained whether this should be G_4 or G_2
 - 3. The data is mildly incompatible with SSD and QRPA theory

Systematics

• Systematics focus on:

Background model

- 1. Vary the source location ($\pm 0.79\%$)
- 2. Remove a contribution of pure β (⁹⁰SrY) (+1.14%)
- 3. Vary model parameters ($\pm 0.21\%$)

Energy reconstruction

- Shift MC energies (energy bias) (0.17%)
- Vary the binning (0.36 %)

• $2\nu\beta\beta$ shape + MC accuracy

- MC statistics (0.09%)
- Vary Geant4 cross sections (Bremstrallhung) (0.26%)
- Isotope abundance (0.20%) and selection efficiency (1.2%)
- Each is assigned a posterior distribution (Gaussian for all but SrY which is uniform)

• Sample from all to convolve systematics into posterior

 $\mathcal{T}_{1/2} = 7.08 \pm 0.02 \; (\text{stat.}) \pm 0.11 (\text{syst.}) imes 10^{18} \; ext{yrs} \; (68\% \; ext{c.i.})$

(8)

NME comparison

• Compute the effective NME

$$\frac{1}{T_{1/2}} = |M_{2\nu}^{\rm eff}|^2 \times G \qquad (9)$$

$$M_{2\nu}^{\rm eff} = \sqrt{\frac{1}{T_{1/2}G}} \qquad (10)$$

• Consider
$$g_A^{\text{eff}} = 1.27$$

- Complication: For $2\nu\beta\beta$ decay G also depends on the model
- \bullet Use SSD value 4.134 \times 10 $^{-18}~\rm yr^{-1}$
- Decay rate quenched significantly compared to theoretical expectation ⁶⁷⁸

$$M_{2
u}^{
m eff} = 0.1851 \pm 0.0014$$
 (11)

⁶Shell model from Phys. Rev. C 105, 034312 (2022)

⁷QRPA from Phys. Rev. C 91, 054309 (2015)

⁸IBM-2 from , Phys. Rev. C 91, 034304 (2015) and Phys. Rev. C 105, 044301 (2022)

Reconstructed spectral shape

- Reconstruct the spectral shape and a confidence band
- Errors are very small
- The two models reconstruct a slighly ($\sim 3\sigma$) incompatible shape
- Improved model gives a flater spectrum
- This can be considered as a *measurment* of the spectrum shape

Reconstructed spectrum (2)

- To see more clearly look at the difference in improved-SSD counts
- SSD reconstructs slightly more counts also a sharper spectrum?

Data processing: Calibration / stabilisation

- Calibrate LMO using Th/U calibration source
- \bullet Correct for thermal gain variations with $^{208}{\rm TI}$ 2615 keV peak

Data processing: PSD

- Remove pileups and other superious events (eg noise spikes)
- ${\scriptstyle \bullet}$ Principle components trained on $2\nu\beta\beta$ events
- Reconstruct each pulse using first 6 components
- Define a reconstruction error:

$$R = \sqrt{\sum_{i} (x_{i} - \sum_{k} q_{i} w_{k,i})^{2}}$$
(12)

• Normalise by the observed Median and MAD

Data processing: LD cuts

- Each detectors sees two LDs
- Combine the two pieces of information for a 2D cut
- LD energy centered and normalised based on energy resolution

$$n_i = \frac{E_{i,\text{LD}} - E_{i\text{LD,exp}}}{\sigma_i(E)}$$

Data processing: Coincidences

- Fairly small range of e⁻ in LMO means 0(2)νββ signal is likely to reconstruct in one crystal (M₁)
- Backgrounds can trigger multiple detectors
- Define *multiplicity* as number of detectors triggered with E > 40 keV in a window ± 10 ms
- \bullet Also remove events within $\pm 5~\text{ms}$ of a muon veto trigger

Delayed coincidence

 ${\scriptstyle \bullet}$ Veto events likely orginating in Th/U decay chains

$$\overset{212}{\text{Bi}} \underset{\alpha(6207 \text{ keV})}{\overset{60.6 \text{ min}, 35.9\% \text{ BR}}} \overset{208}{\xrightarrow{}} \text{Tl} \underset{\beta^{-}(4999 \text{ keV})}{\overset{3.1 \text{ min}, 100\% \text{ BR}}} \overset{208}{\xrightarrow{}} \text{Pb}.$$

• Low CUPID-Mo radioactivity allows a novel cut on ²¹⁴Bi with a long dead time

$$\begin{array}{c} 222 \text{Rn} \xrightarrow{3.8 \text{ day, } 100\% \text{ BR}}{\alpha(5590 \text{ keV})} & 218 \text{Po} \xrightarrow{3.1 \text{ min, } 99.98\% \text{ BR}}{\alpha(6115 \text{ keV})} & 214 \text{Pb} \\ \hline \\ 214 \text{Pb} \xrightarrow{27.1 \text{ min, } 100\% \text{ BR}}{\beta^{-}(1018 \text{ keV})} & 214 \text{Bi} \xrightarrow{19.7 \text{ min, } 99.98\% \text{ BR}}{\beta^{-}(3269 \text{ keV})} & 214 \text{Po} \\ \hline \\ 214 \text{Po} \xrightarrow{163.4 \mu\text{s, } 100\% \text{ BR}}{\alpha(7834 \text{ keV})} & 210 \text{Pb} \end{array}$$

(12)

Energy resolution

• Estimate energy resolution using γ lines in background and calibration data

Bayesian counting analysis

- ${\scriptstyle \bullet}$ Counting analysis used to estimate 0 $\nu\beta\beta$ decay rate
- Exponential + linear model
- Binned fit with 3 bins (central and two sidebands)
- Optimized ROI on Ch-Ds basis

$$\lambda_{i} = \sum_{c=1}^{19} \sum_{d=1}^{9} (Mt)_{c,d} / Mt \cdot \left(\varepsilon_{i}(c,d) \cdot \Gamma^{0\nu} \frac{N_{A} \cdot \eta}{W} \right)$$
(13)

$2\nu\beta\beta$ systematics

- Series of tests to constrain systematic uncertainties
- Dominant

Uncertainty	Posterior Distribution
Binning	Gaussian 0.3%
Energy Scale	Gaussian 0.1%
MC statistics	Gaussian 0.1%
Source location	Gaussian 0.8%
Model choice	Gaussian 0.2%
Bremsstralhung cross section	Gaussian 0.2%
Cut efficiency	Gaussian 1.2%
Isotope Abundance	Gaussian 0.2%
⁹⁰ SrY	Uniform [0,+1.0%]