Radon background in astroparticle physics experiments -*Past achievements and future challenges*

Hardy Simgen Max-Planck-Institut für Kernphysik

Radon – Some properties

• Noble gas.

- Heaviest existing gas → not so noble.
- No stable isotopes \rightarrow All radon is radioactive.
- Part of natural (primordial) radioactivity.
- Short-lived: ²²²Rn (3.82 days) by far the longest living, rest much shorter
- Followed by a chain of radioactive heavy metals (a-, β and γ -emitters)

Radon detection (at low level)

- All radon detection by measurement of radioactivity
- Alpha emitter: "High" energy signal
- Low-level → Requires radon collection
 - By cryo-trapping
 - By electrostatic collection of charged daughters
- Low-level → Requires clean materials and vacuum
- Warning: ICP-MS / NAA has fantastic sensitivity for U/Th. But radioactive may be broken, so no information about Rn!

Material screening by ²²²Rn emanation

- ²²²Rn-emanation rate provides complementary information
- MPIK ²²²Rn infrastructure:
 - >20 ultralow background miniaturized proportional counters
 - Sensitivity: ~10 atoms.
 - 8 parallel counting lines
 - Fully automated ²²²Rn concentration system (AutoEma).
 - ~15 sample vessels (0.1 80 lit.)
 - 3 electro-static ²²²Rn monitors

The radon emanation process

5

- Recoil-driven emanation:
 - O(5 MeV) α-decay creates O(100 keV) nuclear recoil
 - Recoild range 10 100nm, depending on material
 - Independent of temperature
- Diffusion-driven emanation
 - Strongly depends on temperature
 - Diffusion coefficient varies a lot between materials

Fig. 2. Scheme of the release of radon from the sample by recoil and diffusion mechanisms.

 Intrinsic radium (uranium/thorium) contamination

 Intrinsic radium (uranium/thorium) contamination

 Intrinsic radium (uranium/thorium) contamination

9

• Diffusion through seals

- Intrinsic radium (uranium /thorium) contamination
- Diffusion through seals
- Emanation from vessel and instrumentation

- Intrinsic radium (uranium /thorium) contamination
- Diffusion through seals
- Emanation from vessel and instrumentation
- A successful radon mitigation strategies must address all radon sources!

BOREXINO

12

<1 nBq/ton ²²²Rn <2 nBq/ton ²²⁰Rn

Less than one ²²²Rn atom in 300 tons of scintillator

BOREXINO

- Liquid target
 - "easy" to purify
 - Repeated purification possible
- Minimization of vessel material (nylon balloons)
- Minimization of seals
- Thorough ²²²Rn screening campaign (complementing bulk impurity screening program)
- Thermal stability → No convection → Inner "fiducial" volume remains clean!

BOREXINO: Thermal stabilization

14

Switch off convection to achieve ultimate purity!

G. Ranucci, Neutrino 2020

Nylon film during measurement @ MPIK

Radon in the BOREXINO nylon vessel

- Radon measurement from thin nylon foild yields
 - Contribution from surface plus
 - Unknown fraction of bulk contamination
- For ²²²Rn mitigation it is crucial to know its origin.
- Nylon can absorb a lot of water (10% of its weight)
 - "widening" of polymers
 - much faster radon diffusion

Radon in the BOREXINO nylon vessel

- $d_{dry} = (270 \pm 30) \, \mu m$
- d_{humid} = (7 ± 1) µm = 40 x d_{dry} (NIM A 449 (2000) 158-171)
- 1-dimensional, stationary model of diffusion:
 - $A_{dry} = A_{surf} + 0.144 \times A_{bulk}$

$$A_{humid} = A_{surf} + 0.988 \times A_{bulk}$$

- Disentanglement of bulk and surface contribution
- Finally upper limits for both:
 - $A_{bulk} < 15 \mu Bq/kg$
 - $A_{surf} < 0.9 \ \mu Bq/m^2$

High Purity nitrogen for BOREXINO

N₂ production rate: 100 m³/h ²²²Rn: <1 atom/4m³ (STP)

- Radon-free nitrogen for scintillator sparging
- Large flow-rate (100 m³/h)
- Simple concept withlittle maintenance needed
- Lqiuid nitrogen cooled columns
- Purifications of liquid nitrogen (less efficient, but high throughput)
- Key: Low ²²²Rn emanating activated carbon

Appl. Rad. Isot. 52 (2000) 691

Improving adsorption gas purification

- Improving performance by doubling columns and avoiding equilibrium
- Vacuum swing adsorption technique can reduce amount of adsorbens
- Gain in radiopurity → purer gas JINST 16 P07047 (2021)

Improving adsorption gas purification

- Improving performance by doubling columns and avoiding equilibrium
- Vacuum swing adsorption technique can reduce amount of adsorbens
- Gain in radiopurity → purer gas
 JINST 16 P07047 (2021)
- New adsorber materials → José Busto
- Carbon molecular sieves
- metal organic frameworks
- molecular cages
- carbon aerogel

. . .

Improving adsorption gas purification

- Improving performance by doubling columns and avoiding equilibrium
- Vacuum swing adsorption technique can reduce amount of adsorbens
- Gain in radiopurity → purer gas
 JINST 16 P07047 (2021)
- New adsorber materials → José Busto
- Carbon molecular sieves
- metal organic frameworks
- molecular cages
- carbon aerogel

. . .

²²²Rn emanation rate of some stainless steel vessels

	Vessel	Size	²²² Rn emanation rate [mBq]
	BX storage tank HT2	2.1 m ³	1.2 ± 0.4
	BX storage tank D330	1.6 m ³	7.1 ± 1.2
/	GERDA cryostat	64 m ³	13.7 ± 1.9
	XENON1T cryostat	~2 m ³	1.8 ± 0.3
	XENONnT cryostat	~4.5 m ³	1.9 ± 0.2
/	BX water extraction column	0.6 m ³ , 608 m ² (SS packings)	4.8 ± 0.7> 8 μBq/m ²

Understanding ²²²Rn source

Example: XENON1T setup

Understanding ²²²Rn source

Example: XENON1T setup

Radon removal by xenon distillation

- 25
 - Radon is less volatile than xenon → reverse operation mode w.r.t. Kr removal
 - Feasibility demonstrated in Xenon100: EPJC (2017) 77:358
 - Applied in XENON1T: 4.5 μBq/kg achieved: EPJC (2021)81:337
 - High flow radon removal system developed for XENONnT: arXiv: 2205.11492
 - 0.8 µBq/kg achieved
 - Future: Further upscaling?
 - Need to process entire budget in O(²²²Rn half-life)
 - Processing speed for DARWIN must be >=10 tons/day
 - Efficiency in power consumption and xenon holdup versus radon reduction is crucial

Radon removal by xenon distillation

- 26
 - Radon is less volatile than xenon → reverse operation mode w.r.t. Kr removal
 - Feasibility demonstrated in Xenon100: EPJC (2017) 77:358
 - Applied in XENON1T: 4.5 μBq/kg achieved: EPJC (2021)81:337
 - High flow radon removal system developed for XENONnT: arXiv: 2205.11492
 - 0.8 µBq/kg achieved
 - Future: Further upscaling?
 - Need to process entire budget in O(²²²Rn half-life)
 - Processing speed for DARWIN must be >=10 tons/day
 - Efficiency in power consumption and xenon holdup versus radon reduction is crucial

Radon mitigation by surface coating

- Idea: A Rn-tight, clean (Ra-free) surface coating blocks Rn-emanation
- Should work for recoil-driven (86 keV) AND diffusion-driven emanation

Radon mitigation by surface coating

- Countless different coating techniques exist: Where to start?
- Required properties: Tight, homogeneous, stable (also at low temperature)
- Coating cleanliness may be ultimate limitations --> start with the cleanest!
 - Vacuum processes
 - Physical Vapor Deposition (PVD)
 - Chemical Vapor Deposition (CVD)
 - In-house electro-deposition
 - Experience from electro-formed Cu
- Samples: Metallic (ideally stainless steel) with high radon emanation rate
- Initially 4% thoriated tungsten welding rods
 - Wrong substrate tungsten
 - Wrong isotope ²²⁰Rn: Much shorter half-life than ²²²Rn

TIG-Electrodes in Anlehnung an / manufax ISO 6848/2004

Ø 1,0 x 175 mm Los-Nr.: / Lot-no.: 86801 Inhalt / Content:

10 Stück / pcs

JOLFRAM INDUSTRIE TRAUNS

Investigated vacuum coating techniques

- Physical vapor deposition (PVD)
 - Titanium sputtering
- Chemical vapor deposition (CVD):
 - Amorphous hydrogenated carbon coating (a-C:H)
- Copper plasma deposition

Results: ²²²Rn emanation reduction factors

Method	Coated material	Company	²²⁰ Rn reduction	²²² Rn reduction
Physical vapor deposition (sputtering)	Ti	Europcoating	1 - 5	~1
Plasma deposition	Cu	Dr. Laure	2 - 20	
Chemical vapor deposition	C-H	Innovative Coating Solutions	~3	~1,5

Little ²²⁰Rn reduction and essentially no ²²²Rn reduction

Best result for "hot" plasma depsoition, but re-evaporation due to hot substrate

Thornton structure zone model:

- Sputtering is low temperature process
- Growth of vertically aligned grain boundaries
- May block reactive gases (corrosion protection), but "diffusion highway" for noble gases.
- Focus on high temperature applications (plasma coating) or non vacuum-growth technique.
- But what about CVD?

Copper electro-deposition

- Motivated by experience with electro-formed copper (clean!)
- In-house development at MPIK: 5 μm thick Cu layer
- Anode made from copper
- Good mechanical stability on tungsten
- Efficient blocking of ²²⁴Ra alpha-decay
- ²²⁰Rn reduction factor up to 100 observed!

Optimization of Cu coating procedure and ²²⁰Rn reduction results

- Optimum surface current density identified.
- Avoid whisker growing by careful parameter control.
- Diffusion-driven emanation confirmed by tests at different temperatures.
- Even hints for slight ²²²Rn reduction.

From tungsten to stainless steel: Recoil-implanted ²²⁴Ra

• Easy to produce, relatively high activity

Coating (and de-coating) of ²²⁴Ra-implanted SS disc

- ²²⁴Ra decays on SS disc
- ²²⁰Rn is emanated and decays in electrostatic radon monitor
- Charged ²¹²Pb (²²⁰Rn-daughter) is collected on PIN diode
- Counting of ²¹²Po α-decays
- Possible issue: Activity wash-off in electrolyte
- Procedure: Implantation → coating
 → de-coating
- Upper limit from coating, lower limit from de-coating
- Results for reduction factor R: 20 < R < 1000

Novel ²²²Rn sources

- ²²⁶Ra implantation in SS, Cu, Ti, Pb, Ge, Si, PTFE, SiO₂, acrylic.
- 20 24 new samples.
- Similar development at PTB (Braunschweig): Traceable ²²²Rn sources.
- Deposition on an active Si detector allows online emanation rate monitoring.

Appl. Rad. Isot. 196 (2023) 110726

ISOLDE sample characterization

• Alpha measurement:

38

- Short-lived contaminants (from ²³⁵U chain)
- ~8.5 Bq ²²⁶Ra activity
- Central deposition confirmed
- Gamma measurement confirms alpha measurement
- Unexpected 139 Ce discovered (t_H = 137.6 d)
- Direct ²²²Rn emanation test with proportional counters:
 - Sample a: (2.00 ± 0.05) Bq
 - Sample b: (2.07 ± 0.05) Bq
- Wipe test: Less than 1% of activity removed

Appl. Rad. Isot. 194 (2023) 110666

Measurement		Result (Bq)
222 D n amonation	а	2.07 ± 0.03 (stat) ± 0.04 (syst)
Kiremanation	b	2.00 ± 0.03 (stat) ± 0.04 (syst)
N-spectrometry	а	$7.4 \pm 0.1 (stat) \pm 0.9 (syst)$
γ-spectrometry	b	8.4 ± 0.3 (stat) ± 1.0 (syst)
α_{-s} nectrometry	a	$8.7 \pm 0.1 \text{ (stat)} {}^{+2.0}_{-1.8} \text{ (syst)}$
a-spectrometry	b	9.1 ± 0.1 (stat) $^{+0.7}_{-0.4}$ (syst)

Coating of the 1st ISOLDE sample

PhD thesis Florian Joerg Heidelberg University

- Standard MPIK electrochemical Cu-on-SS coating recipe applied
- ²²²Rn emanation rate
 - Before coating: (2.00 ± 0.05) Bq
 - After coating: (4.3 ± 0.3) mBq
- Unexpected large ²²²Rn reduction factor: ~465
- Gamma spectroscopy results:

Activity [Bq]	²²⁶ Ra (186 keV)	²²² Rn daughters
ISOLDE sample before coating	8.4 ± 1.0	6.0 ± 0.3
ISOLDE sample after coating	7.7 ± 1.0	7.2 ± 0.4
Electrolyte after coating		0.34 ± 0.02

1st coated ISOLDE sample: Temporal development of ²²²Rn emanation rate

- ²²²Rn emanation rate was found to decrease
- Coating is getting "tighter"
- Oxidation?
 - But storage under protective atmosphere
- Re-crystallisation?
- Final ²²²Rn reduction factor: ~1700
- Currently: Temperature dependency studies ongoing

Secondary Electron Microscopy (SEM) investigation of our coating

EHT = 3.00 kV

41

- Rough surface texture with spherical structures.
- Unhomogeneous adhesive layer with small grain size and holes.
- Tight cover layer with larger grains.

NMI

www.nmi.de

	Copper coating
	A A A A A A A A A A A A A A A A A A A
	Stainless steel substrate
1.00	
	WD = 5.0 mm Width = 25.00 µm Signal A = InLens File Name = A230301_19.tif

Tilt Corrn. = On

Stage at T = 54.0 °

151443-Imp-SS-6-00

- Very preliminary study
- Done at Heidelberg University (IMSEAM: Institute for molecular systems engineering and advanced materials)
- Basic features as expected, but some unexplained effects:
 - Amplitude ratios doesn't always match expectation (directionality in lattice?)
 - Peak positions slightly shifted (material stress?)
 - Not understood low intensity peaks

42

H. Simgen, MPIK, GDR Deep Underground Physics 2023

Radon diffusion studies

- ²²⁶Ra source: How to measure only ²²²Rn emanation by diffusion (no recoil)?
- Need ²²²Rn source without ²²⁶Ra
- Recoil-implant ²²²Rn in substrate and measure ²²²Rn emanation
- Diffusion in metals is low → only ²²²Rn close to surface relevant.
- Alpha counter → Total activity
- Proportional counter → Emanation fraction
- Simple diffusion model predicts emanated radon fraction:

$$R = \frac{Emanation(t)}{Activity(t)} \sim \sqrt{D \cdot t}$$

Material	Radon diffusion constant
Copper	(5 ± 2) x 10 ⁻²³ cm ² /s
HP Germanium	~2 x 10 ⁻²³ cm ² /s
HP Germanium (Li-doped)	~2 x 10 ⁻²² cm ² /s
Stainless steel	~1 x 10 ⁻²² cm ² /s
Quarz glass (amorphous)	(4 ± 2) x 10 ⁻²⁴ cm ² /s
Quarz crystal	(3 ± 1) x 10 ⁻²² cm ² /s

H. Simgen, MPIK, GDR Deep Underground Physics 2023

Activity(t)