GDR Deep Underground Physics plenary meeting

Jun 21-23, 2023

The Oscura experiment

B B

- Context
- Overall design
- Major challenges and R&D
- Timeline, DAMIC-M and Oscura

for the Oscura Collaboration

Context

Skipper CCDs have provided the world best limits on sub-GeV DM interacting with electrons. To exploit this technology a program of experiments with increasing sensitivity is in place

Challenges for Oscura: increase in mass (i.e. n. CCDs and associated electronics) and substantial decrease in background

Major R&D required!

Oscura: 10-kg skipper CCD experiment

Oscura in a nutshell:

- 10 kg detector, 20000 skipper CCDs (small format 1kx1k to reduce readout time)
- CCDs immersed in a LN₂ pressure vessel
- e.f. copper and ancient lead for internal shielding
- dedicated ASIC FE and multiplexing (in LN₂)

120K

[arXiv:2202.10518]

Sensors fabrication

- Teledyne/DALSA (Canada), which has developed with Steve Holland (LBNL) the high-resistivity, high-voltage process required for the extremely low dark current CCDs of the DM program (DAMIC, SENSEI, and DAMIC-M) will discontinue its 6" production line
- Partnership with Microchip and Lincoln Lab (both in the USA) for the transfer of knowledge
- Oscura prototype CCDs (1kx1k pixels) successfully fabricated and tested [NIMA 1046 (2023), 167681] $8" = 200 \text{ mm wafer, thickness} = 725 \ \mu\text{m}, \text{ pixel size 15 } \mu\text{m} \times 15 \ \mu\text{m}$

diced CCDs from 8" wafer

Oscura CCD packaged

Oscura CCD test box

Oscura CCD tracks

Sensors Performance

Encouraging results for this first production

Parameter	No events with >1e-	No events w 3e- or mor	/ith [.] e	Prototype	Units
Dark current	1×10^{-6}	1.6×10^{-4}	~	3×10^{-2}	e ⁻ /pix/day
Readout time for full array	< 2	< 5	\checkmark	3.4 (4.2)	hours
Pixel readout rate	> 188	> 76	\checkmark	111 (89)	pix/s
Readout noise	< 0.16	< 0.20	~	0.19 (0.20)	e^- RMS
Spurious charge	< 10 ⁻¹⁰	$< 10^{-8}$		7.2×10^{-7}	e ⁻ /pix/transfer
Trap density with $\tau > 5.3$ ms	< 0.12		~	< 0.015	traps/pix
Charge transfer inefficiency	< 10 ⁻⁵		1	$< 5 \times 10^{-5}$	1/transfer
VIS/NIR light blocking	> 90%		~	95%	

- sub-electron resolution achieved
- most of the requirements are fulfilled
- dark current to be measured underground at MINOS (Fermilab)

Packaging of Multi Chip Modules

- Fabrication of prototype MCMs at the Argonne National Lab facilities (fabrication of Si pitch adapter, glueing of sensors and flex cable, wire bonding)
- About 1500 MCMs needed for Oscura: we plan to automatize the packaging procedures (manual for these first prototypes)

Readout electronics

- approx 24000 channels to be readout
- Cold front end electronics and multiplexing to reduce complexity (only 94 cables to feedthrough the vessel)
- 256 multiplexing (2x16 multiplex)
- One LTA CCD controller to drive 4 Super Modules (1024 CCDs); 24 LTAs for the entire experiment

- MIDNA ASIC performs analogically the Correlated Double Sampling
- The full chain has been prototyped and successfully tested

First Test with 10 MCMs (160 CCDs)

[JINST 18 P01040]

- Readout by a single LTA. Demonstrates the feasibility of the multiplexing scheme
- Large n. of CCDs (compare with LSST, 189 CCDs)
- 90% of the CCDs worked without any preselection: excellent yield!

LN2 Cooling

• first tested with a single CCD (electronics outside the vessel)

- last week we successfully operated a MCM with cold electronics
- LN₂ scintillation (no measurement in the literature): preliminary measurements indicate it should not be a problem

Oscura background control

Main background components

- Cosmogenic activation of Si and Cu
- **Cu:** e.f. copper facility underground at SNOLAB
- Si: Tritium accumulates at 2 mdru/day at sea level; 5 days max. exposure!

Silicon wafers exposed to Los Alamos neutron beam

 use of underground storage and shielded containers for transport (DAMIC-M)

baking successfully eliminates bulk tritium

• Radiogenic backgrounds from electronics, cables and material close to the CCDs

 DAMIC-M cable	²³⁸ U [ppt]	²³² Th [ppt]		
 Commercial	2670 +/- 30	270 +/- 60		
Customed	31 +/- 1	11 +/- 1		

DAMIC-M essential to demonstrate feasibility of Oscura background goal (0.01 dru)

Oscura Sensitivity

30 kg yr

DM-electron scattering mediated by a heavy (left) or light (right) mediator

Oscura Timeline

Outlook, DAMIC-M and Oscura

- Oscura is an ambitious project built on the success of the CCD technology for low-mass DM searches. Now in advanced R&D stage, with most of its technical challenges resolved
- Many of DAMIC-M solutions are essential for Oscura (e.g. background control)
- DAMIC-M and Oscura schedules are nicely staggered: DAMIC-M scientific goals achieved by end of 2026, while one kg integration-test Oscura detector is assembled
- DAMIC-M will be the lowest background apparatus with infrastructure specifically for CCDs, available before Oscura. Can be very effectively used to test Oscura components (e.g. electronics chain, MCM, SM, 1-kg integration test) and perform early science
- The current infrastructure at LSM does not allow hosting the full Oscura experiment (e.f. copper facility; radon-free air) but DAMIC-M can contribute to its development as a low-background test apparatus