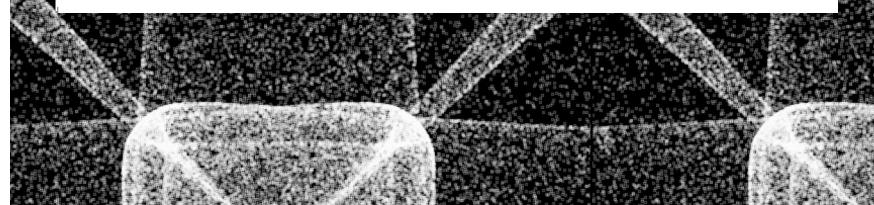

G4CMP: Condensed Matter Physics Simulations with GEANT4

https://arxiv.org/abs/2302.05998 Accepted for publication in NIM-A

> Ben Loer Pacific Northwest National Lab

PNNL is operated by Battelle for the U.S. Department of Energy

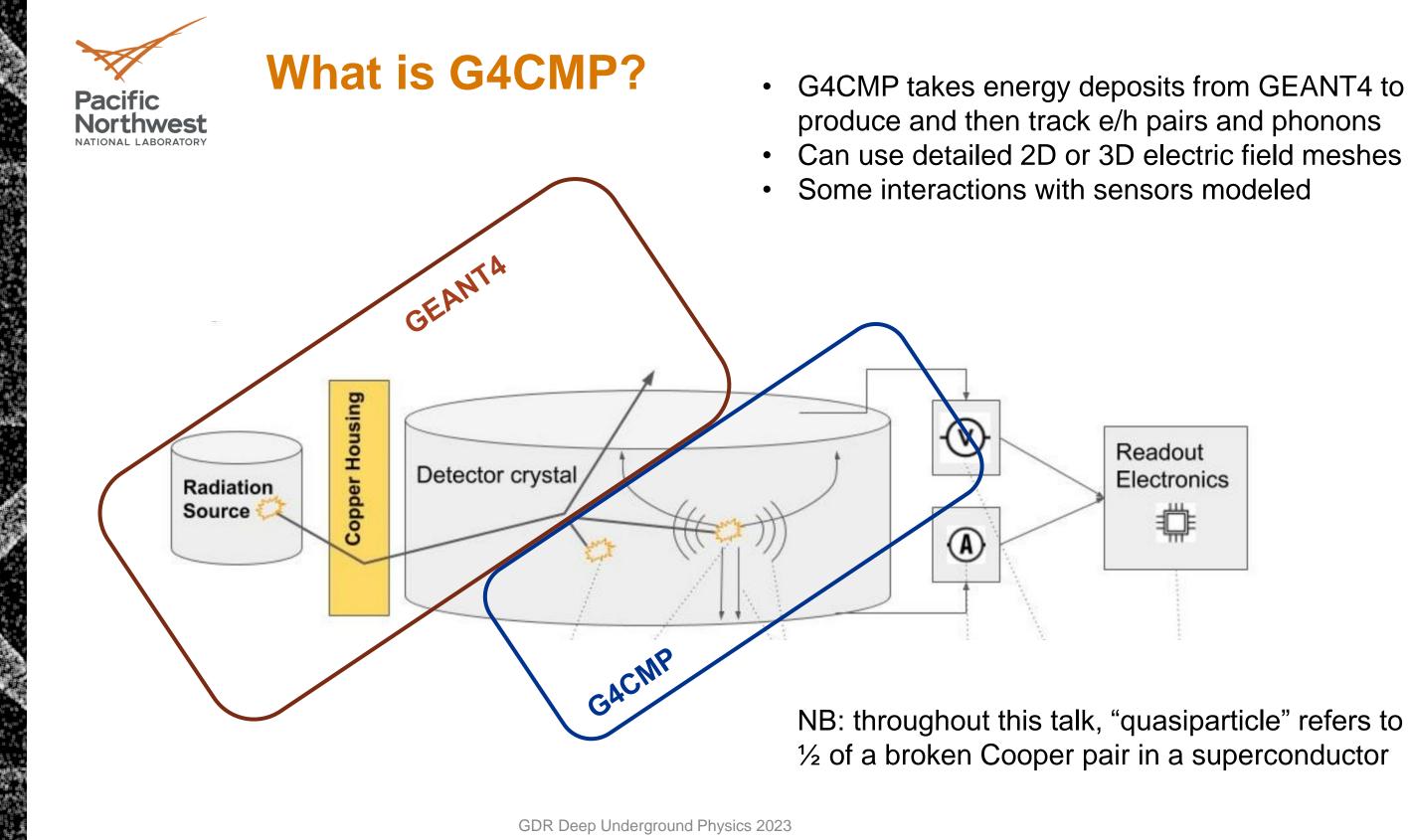


G4CMP: Condensed Matter Physics Simulation Using the GEANT4 Toolkit

M. H. Kelsey^{a,*}, R. Agnese^b, Y. F. Alam^a, I. Ataee Langroudy^a, E. Azadbakht^a, D. Brandt^c, R. Bunker^{d,*}, B. Cabrera^e,
Y.-Y. Chang^f, H. Coombes^b, R. M. Cormier^g, M. D. Diamond^g, E. R. Edwards^d, E. Figueroa-Feliciano^h, J. Gaoⁱ, P. M. Harrington^j,
Z. Hong^g, M. Hui^g, N. A. Kurinsky^c, R. E. Lawrence^a, B. Loer^d, M. G. Masten^k, E. Michaud^l, E. Michielin^{m,n}, J. Miller^d,
V. Novati^h, N. S. Oblath^d, J. L. Orrell^d, W. L. Perry^a, P. Redl^e, T. Reynolds^g, T. Saab^b, B. Sadoulet^{o,p}, K. Serniak^{j,q}, J. Singh^e,
Z. Speaks^b, C. Stanford^r, J. R. Stevensⁱ, J. Strube^{d,s}, D. Toback^a, J. N. Ullom^{i,t}, B. A. VanDevender^d, M. R. Vissers^t, M. J. Wilson^u,
J. S. Wilson^v, B. Zatschler^g, S. Zatschler^g

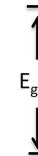
^aDepartment of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA ^bDepartment of Physics, University of Florida, Gainesville, FL 32611, USA

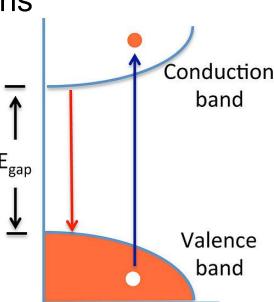
^bDepartment of Physics, University of Florida, Gainesville, FL 32611, USA ^cSLAC National Accelerator Laboratory/Kavli Institute for Particle Astrophysics and Cosmology, Menlo Park, CA 94025, USA ^dPacific Northwest National Laboratory, Richland, WA 99352, USA ^eDepartment of Physics, Stanford University, Stanford, CA 94305, USA ^fDivision of Physics, Mathematics, & Astronomy, California Institute of Technology, Pasadena, CA 91125, USA ^gDepartment of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada ^hDepartment of Physics & Astronomy, Northwestern University, Evanston, IL 60208, USA ⁱUniversity of Colorado, Department of Physics, Boulder, CO 80309, USA ¹Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ^kDepartment of Physics, Santa Clara University, Santa Clara, CA 95053, USA ¹Département de Physique, Université de Montréal, Montréal, QC H3C 3J7, Canada ^mDepartment of Physics & Astronomy, University of British Columbia, Vancouver, BC V6T 121, Canada ⁿTRIUMF, Vancouver, BC V6T 2A3, Canada ^oDepartment of Physics, University of California, Berkeley, CA 94720, USA ^pLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ^qLincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02421, USA ^rFermi National Accelerator Laboratory, Batavia, IL 60510, USA ^sInstitute for Fundamental Science, University of Oregon, Eugene, OR 97403, USA ¹National Institute of Standards and Technology, Quantum Electromagnetics Division, Boulder, CO 80305, USA "Institute for Astroparticle Physics (IAP), Karlsruhe Institute of Technology (KIT), 76344, Germany ^vDepartment of Physics, Baylor University, Waco, TX 76798, USA



Outline

- What is G4CMP?
- Example applications
- Physics processes modeled in G4CMP
 - Charge transport
 - Phonon transport
 - Superconducting electrodes
- How to use

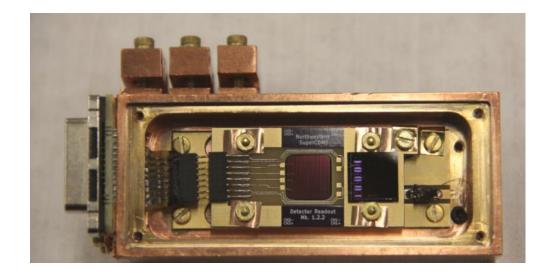

2

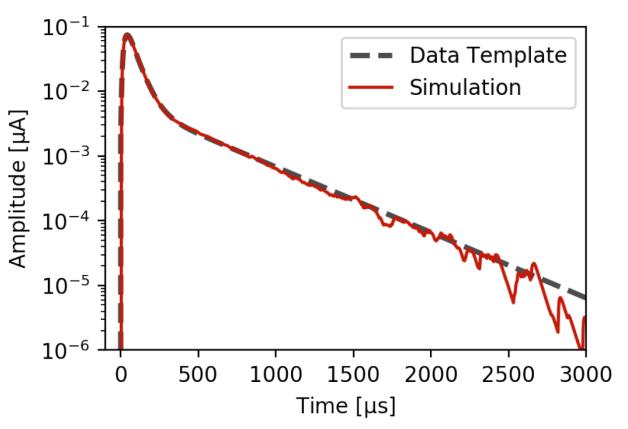


What is G4CMP?

- Software library that extends GEANT4 particle transport to include phonons and electron/hole pair propagation in semiconductor crystals
- Models athermal, transient excitations
- Similar in some ways to treatment of optical photons in GEANT4:
 - Based on well-understood condensed matter physics models
 - but requires many empirical values especially for surface interactions
- Built-in parameterizations for Ge and Si
 - Still need to specify parameters like charge trapping mean free paths

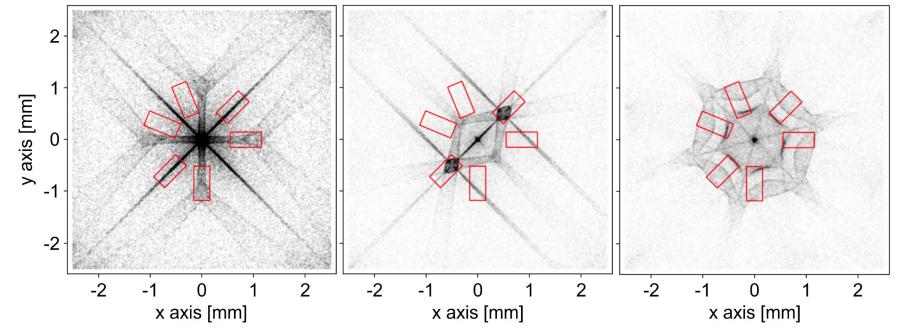
Application examples


GDR Deep Underground Physics 2023


5

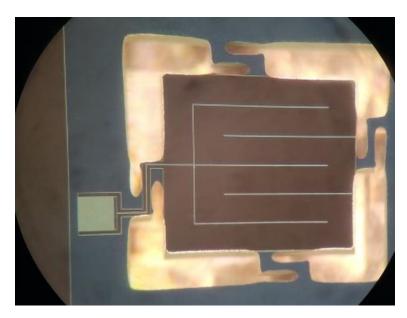
Sensor response time profile

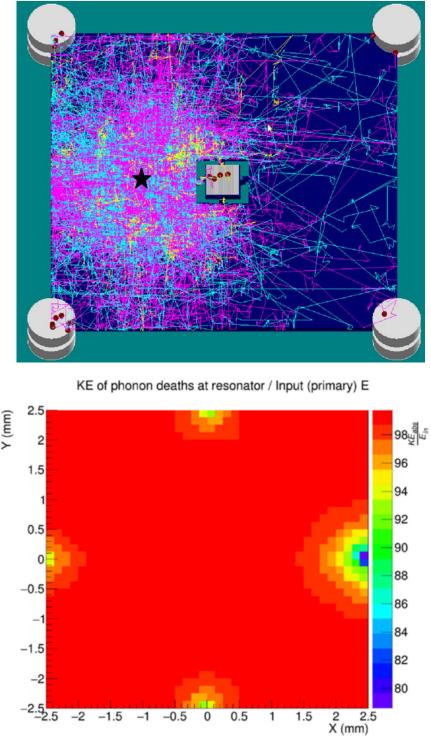
- Response time of SuperCDMS HVeV detector to optical photon pulses
- Early time matches data well out-of-the box
- Late fall time requires parameter tuning, some to non-physical values
- Most likely culprits are no quasiparticle diffusion model, and no modeling of bolometric heat transfer to fridge bath



Optimizing phonon sensor placement

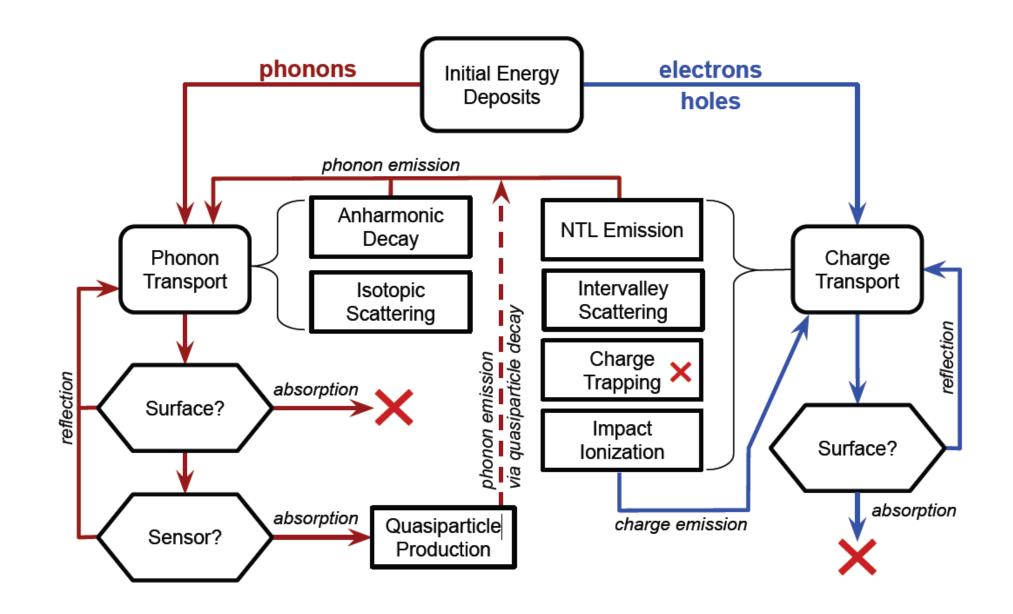
- Localized energy inputs lead to phonon caustics depending on crystal orientation
- Red boxes are suggested locations for sensors designed to measure the caustics explicitly
- More generally sensor placement could be tuned for maximum absorption or position sensitivity

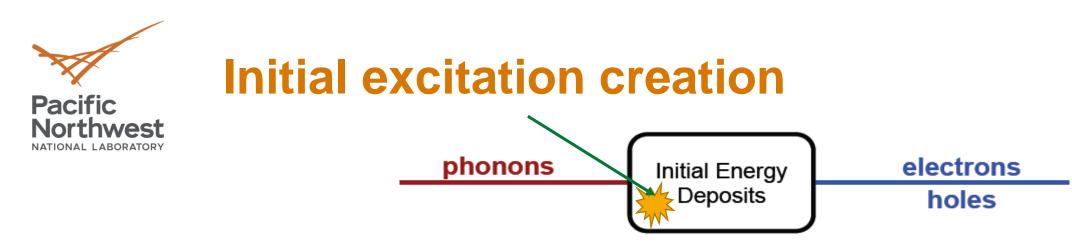



GUN DEEP UNDERGIUUNU ENVSIUS ZUZU

Trenching for sensor isolation

- Sensitive devices like qubits want to be isolated from energy input to the larger substrate
- Conversely bolometers want to contain energy in small island -> larger temperature increase
- G4CMP simulated leakage of phonons into and out of island isolated with micro-machined legs

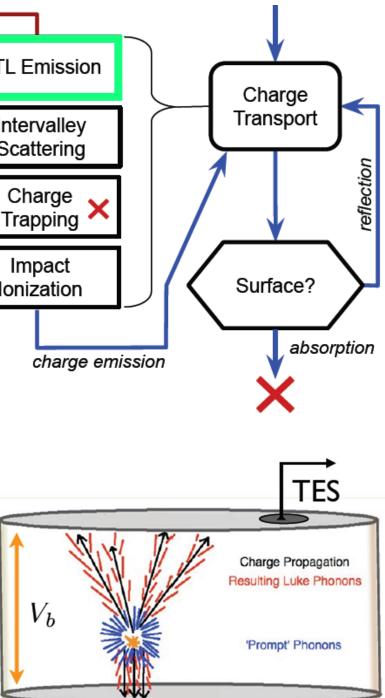


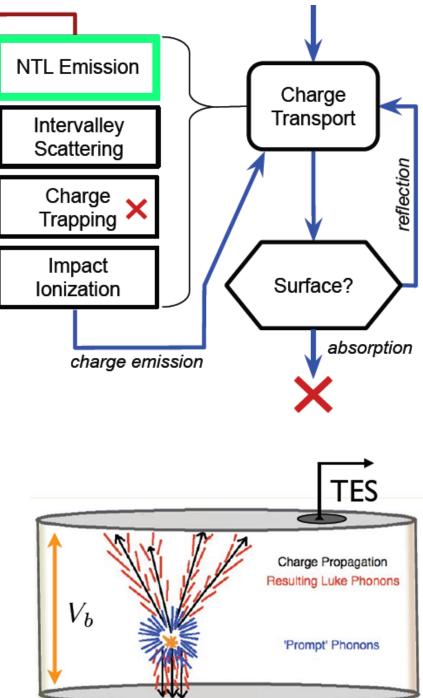

z_{primary}=-800um, 'planar' particle gun geometry

G4CMP physics processes

GDR Deep Underground Physics 2023

- Electromagnetic energy deposited all goes into creation of e/h pairs
 - $N_{avg} = E_{dep} / E_{avg}$ (3.81 in Si), sampled from Poisson-like distribution with Fano factor (F~0.15 in Si)
 - Each particle given same energy E_{dep}/N
- Energy deposited by heavy ions or nuclear recoils partitioned into primary phonons and e/h pairs based on yield model (default Lindhard)
 - All phonons start with approximately Debye energy
 - No optical phonons modeled, assumed to immediately downconvert to acoustic phonons

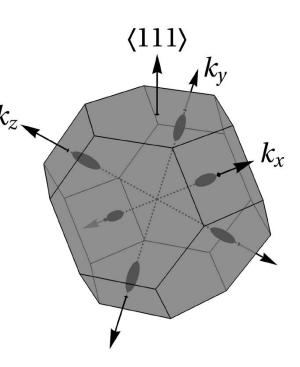

Charge propagation: NTL emission

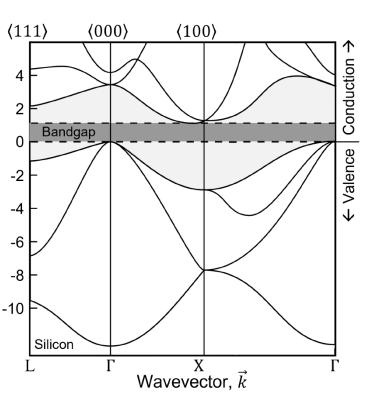

Pacific

Northwest

- Supersonic charges shed energy by emitting phonons, analogous to Cerenkov radiation
- At zero electric field, primary e/h lose energy within ~microns and then continue until they hit a surface
- With electric field, charge carriers reach steadystate average drift speed and continuously emit NTL phonons
- This property enables SuperCDMS HV detectors to reach low thresholds
- Total phonon emission = 1 eV / V / pair
 - For 50 eV energy deposit, npairs = 13.1
 - At 100V bias, total measured energy will be 50eV + 13.1 * 100eV = 1.36 keV

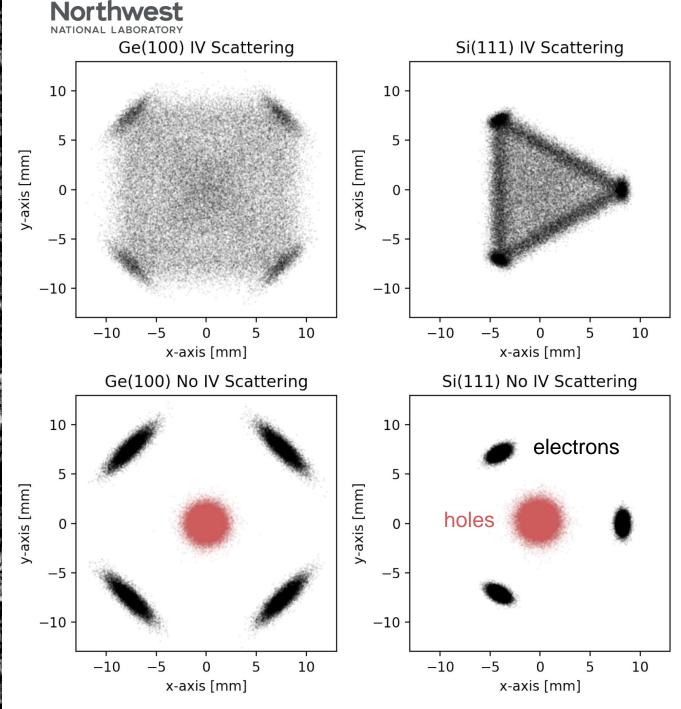
phonons

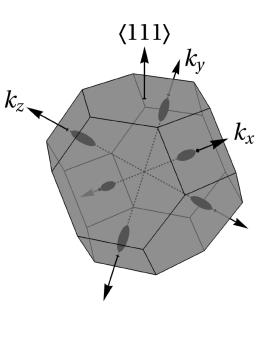



Oblique charge propagation and inter-valley scattering

- Holes propagate isotropically at zero field, or follow field lines, ignoring crystal orientation
- Electrons have preferred minimum-energy propagation directions not aligned with typical wafer crystal orientation
- Can scatter off the lattice or impurities to rotate into a different valley propagation direction
- Rate can be parameterized with linear or quadratic forms in electric field

$$v_{\rm IV} = b + m |\vec{E}|^{\alpha}$$
 $v_{\rm IV} = A \left(E_0^2 + |\vec{E}|^2 \right)^{\alpha/2}$


Default parameterization for silicon scales as E⁴


Energy [eV]

Inter-valley scattering

Pacific

- Valleys lead to distinct charge collection patterns from point sources
- IV scattering smears result
- NTL emission broadens all distributions including holes

GDR Deep Underground Physics 2023

charge n point sources esult ns all holes

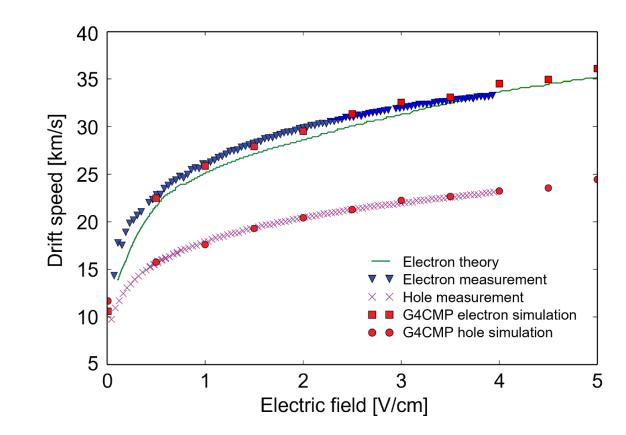
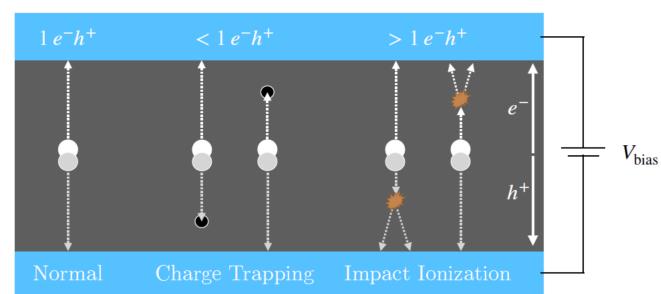
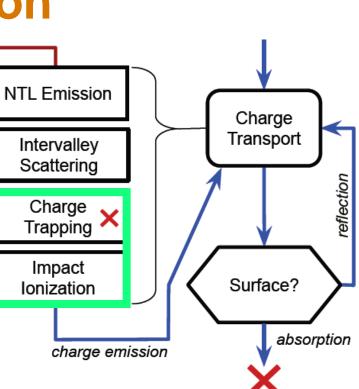
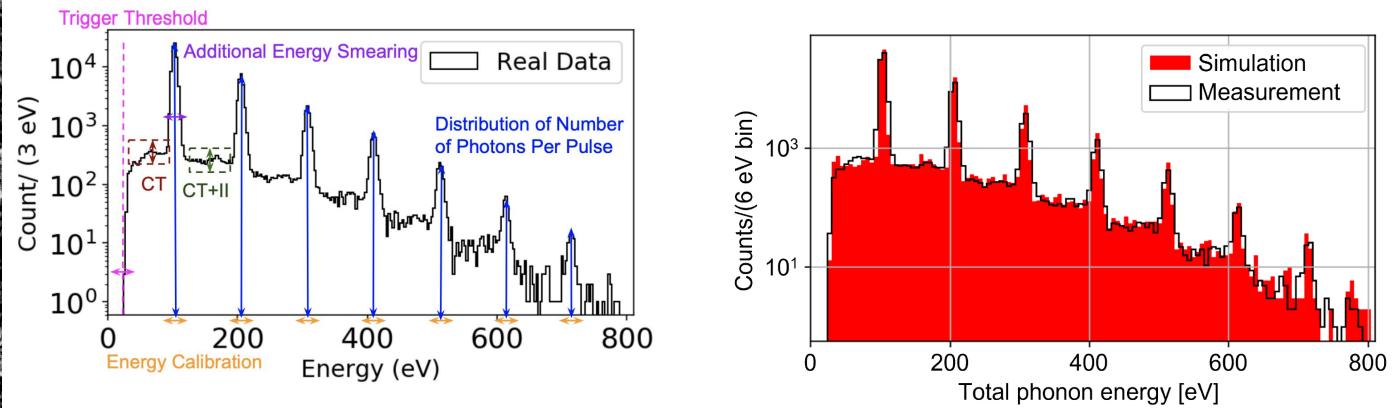



Figure 7: G4CMP-simulated drift speeds in Ge versus applied electric-field strength for electrons (red squares) and holes (red circles), compared to experimental data from Ref. [60] for electrons (blue triangles) and holes (magenta \times 's) and to the theoretical model from Ref. [63] (green curve). Figure adapted from Ref. [2].



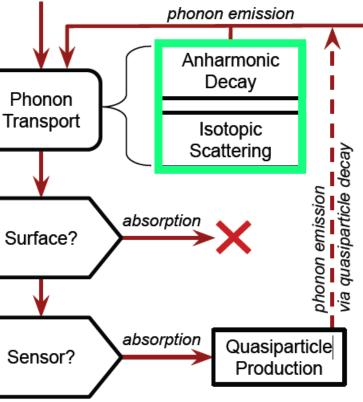
Charge trapping and impact ionization

- · e/h interactions with impurities in crystal
- Assume impurities create local potential wells much smaller than bandgap
- Trapping -> charge is lost
- Impact ionization -> previously trapped charge released
- Only e or h produced, promotion of a pair from valence band (e.g. avalanche diode) takes much larger field and not modeled
- Highly device dependent, default disabled

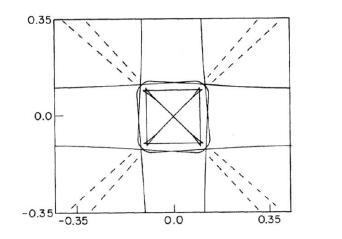

phonons

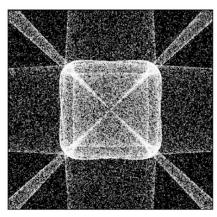
Charge trapping and impact ionization

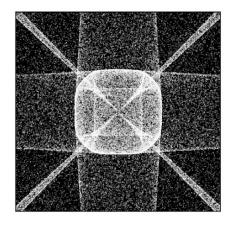
 With electric field, charge trapping and impact ionization lead to ~flat fill between e/h peaks (since interaction can happen anywhere along field direction)


E. Azadbakht, Comparison of Simulations and Data from Small High Voltage Single Crystal Detectors for Dark Matter Searches, Ph.D. thesis, Texas A&M University (2022). www.slac.stanford.edu/exp/cdms/ScienceResults/Theses/azadbakht.pdf

Phonon processes


- Optical (high energy) phonons not modeled, assume immediately downconvert to low energy acoustic modes
 - No phonon-photon interactions
- Acoustic can downconvert to two lower-energy phonons by anharmonic decay, exchanging momentum with the lattice
 - Rate proportional to E⁵
- Can also scatter into random direction and polarization (mode mixing) keeping same energy off isotopic substitution site
 - Rate proportional to E⁴
- High energy phonons highly diffusive, typically downconvert over ~micron lengths then become ballistic (~cm scattering lengths)





Phonon Propagation

 Anisotropic phonon propagation leads to focusing into caustics patterns

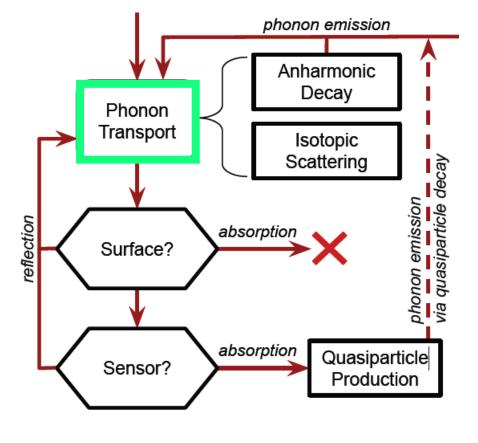


Figure 2: Comparison of phonon caustics predicted for a point source in a 1 cm thick Ge $\langle 100 \rangle$ crystal with corresponding results from G4CMP, showing positions of transverse phonon modes on the face opposite the point source. Left: Outline of phonon caustics in Ge $\langle 100 \rangle$ as predicted by Nothrop and Wolfe [34]. Middle: Caustics pattern as simulated using G4CMP for phonon transport in Ge $\langle 100 \rangle$, in good agreement with the theoretical prediction to the left. Right: Caustics pattern as simulated using G4CMP for phonon transport in a 1 cm thick Si $\langle 100 \rangle$ crystal (see also Ref. [16]).

Surface interactions

- Behavior of e/h and phonons at surfaces strongly depends on treatment, ulletpolish, fabrication recipe -> by default, particles that hit a surface are killed
- Can define simple optics-like surface interactions with explicit probabilities for absorption, reflection, transmission (currently not implemented), and specularvs-diffuse reflection for phonons
- Phonons can also interact via Kaplan Quasiparticle model
 - Partitioning of energy into the superconducting film and back into substrate (as lower) energy phonons) generated based on toy model of quasiparticle production and decay without actually simulating quasiparticles
- In progress effort to add true quasiparticle propagation

How to use G4CMP in your GEANT4 applications

- Install and setup geant4 10.7 as usual (not yet compatible with geant4 v11)
- Obtain g4cmp from github <u>https://github.com/kelseymh/G4CMP</u>
- Build and install with make or cmake, then source `g4cmp_env.(c)sh` to set required environment variables
- Add two lines to your application's cmake file: find package (G4CMP REQUIRED) include(\${G4CMP USE FILE})
- Add one line to your modular physics list: RegisterPhysics (new G4CMPPhysics);
- Associate a crystal lattice to a physical volume:

G4LatticeManager* LM = G4LatticeManager::GetLatticeManager(); LM->LoadLattice(physVol, latticeName /*"Ge" or "Si"*/);

What else is needed to get useful results?

• Specify mean free paths for charge trapping and impact ionization

G4CMP_ETRAPPING_MFP /g4cmp/eTrappingMFP [L] mm

G4CMP_HTRAPPING_MFP /g4cmp/hTrappingMFP [L] mm

G4CMP_EDTRAPION_MFP /g4cmp/eDTrapIonizationMFP [L] mm

G4CMP_EATRAPION_MFP /g4cmp/eATrapIonizationMFP [L] mm

G4CMP_HDTRAPION_MFP /g4cmp/hDTrapIonizationMFP [L] mm

G4CMP_HATRAPION_MFP /q4cmp/hATrapIonizationMFP [L] mm Mean free path for electron trapping

Mean free path for charge hole trapping

MFP for electron-trap ionization by e⁻

MFP for hole-trap ionization by e⁻

MFP for electron-trap ionization by h⁺

MFP for hole-trap ionization by h⁺

Define surfaces

auto* surfProp = new G4CMPSurfaceProperty(name,

pAbsProb, // Prob. to absorb phonon stype = dielectric dielectric); new G4CMPLogicalSkinSurface(name, logicalVolume, surfProp); // or new G4CMPLogicalBorderSurface(name, physVolume1, physVolume2, surfProp);

// to activate Kaplan guasiparticle physics auto sensorProp = surfProp->GetPhononMaterialPropertiesTablePointer(); sensorProp->AddConstProperty("filmAbsorption", 0.20); sensorProp->AddConstProperty("filmThickness", 600.*nm); sensorProp->AddConstProperty("gapEnergy", 173.715e-6*eV); sensorProp->AddConstProperty("lowOPLimit", 3.); sensorProp->AddConstProperty("phononLifetime", 242.*ps); sensorProp->AddConstProperty("phononLifetimeSlope", 0.29); sensorProp->AddConstProperty("vSound", 3.26*km/s); sensorProp->AddConstProperty("subgapAbsorption", 0.1);

surfProp->SetPhononElectrode(new G4CMPPhononElectrode):

Specify electric field

G4CMP_VOLTAGE [V] /q4cmp/voltage [V] volt !=0:

G4CMP_EPOT_FILE [F] /g4cmp/EPotFile [F] V=0

G4CMP_EPOT_SCALE [F] /q4cmp/scaleEPot [F] V=0 Apply uniform +Z voltage

Read mesh field file "F"

Scale the potentials in EPotFile by factor F

GDR Deep Underground Physics 2023

```
qAbsProb, // Prob. to absorb charge carrier
qReflProb, // If not absorbed, prob to reflect
eMinK, //Min wave number to absorb electron
hMinK, //Min wave number to absorb hole
pReflProb, // If not absorbed, prob to reflect
pSpecProb, //Prob. of specular reflection
pMinK, //Min wave number to absorb phonon
```

```
// True sensor area
```


Improving computation speed

- Very many particles generated and tracked in typical G4CMP simulation
- Can specify downsampling factor for phonons and e/h for speedup
- Can also set max reflections before killing

Environment veriable		
Environment variable Macro command	Value/action	Environment variable
G4CMP_MAKE_PHONONS [R]	Fraction of phonons from energy deposit	Macro command
/g4cmp/producePhonons [R]		G4CMP_EH_BOUNCES [N]
G4CMP_MAKE_CHARGES [R] /g4cmp/produceCharges [R]	Fraction of charge pairs from energy deposit	/g4cmp/chargeBounces [N]
		G4CMP_PHON_BOUNCES [N]
G4CMP_LUKE_SAMPLE [R] /g4cmp/sampleLuke [R]	Fraction of generated Luke phonons	/g4cmp/phononBounces [N]
	Coft monimum I also also mono mon avent	G4CMP_EMIN_PHONONS [E] /g4cmp/minEPhonons [E] eV
G4CMP_MAX_LUKE [N] /g4cmp/maxLukePhonons [N]	Soft maximum Luke phonons per event	
G4CMP_SAMPLE_ENERGY [E]	Energy above which to down-sample	G4CMP_EMIN_CHARGES [E] /g4cmp/minECharges [E] eV
/g4cmp/samplingEnergy [E] eV	Energy above which to down sample	G4CMP_MIN_STEP [S]
G4CMP_COMBINE_STEPLEN [L]	Combine hits below step length	/g4cmp/minimumStep [S] >0
/g4cmp/combiningStepLength [L] mm		

simulation edup

Value/action

Maximum e⁻/h⁺ reflections

Maximum phonon reflections

Minimum energy to track phonons

Minimum energy to track charges

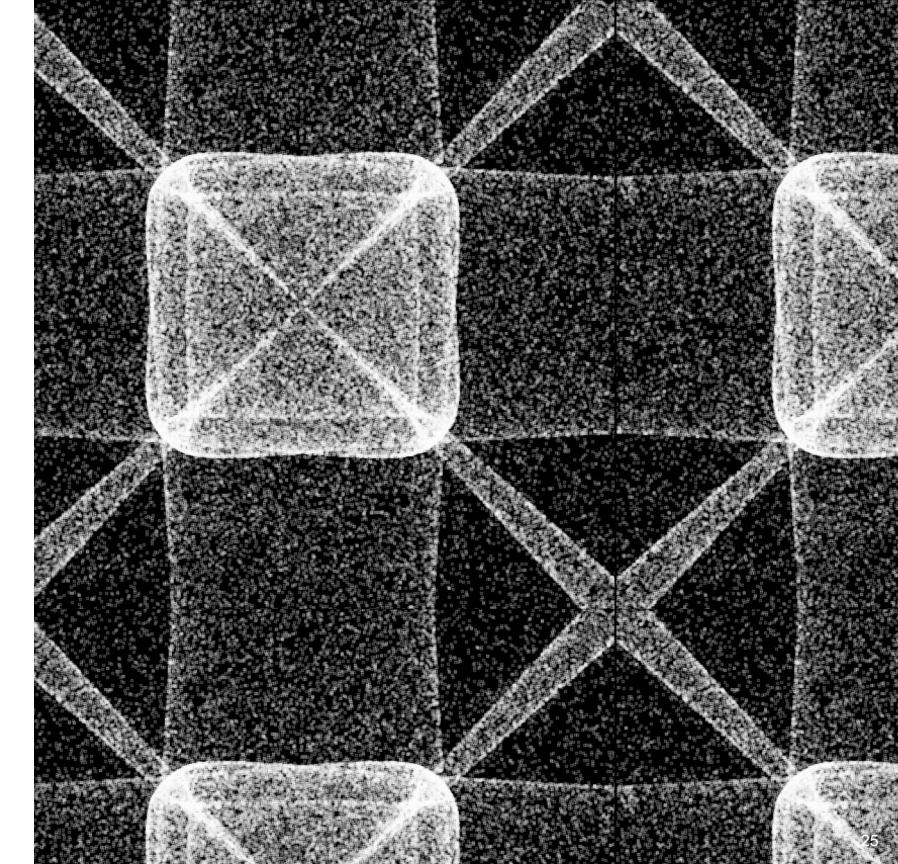
Force minimum step SL0

How to add new lattices?

- Create a config.txt like the one for Si at right
- Parameter meanings documented in **G4CMP** Readme

Crystal parameters cubic 5.431 Ang # (Lattice constant) stiffness 1 1 165.6 GPa # C11, C12, C44 stiffness 1 2 63.9 GPa stiffness 4 4 79.5 GPa # Phonon parameters dyn -42.9 -94.5 52.4 68.0 GPa scat 2.43e-42 s3 decay 7.41e-56 s4 decayTT 0.74 # From S. Tamura et al., PRB44(7), 1991 LDOS 0.093 STDOS 0.531 FTDOS 0.376 Debve 15 THz # Charge carrier parameters bandgap 1.17 eV pairEnergy 3.81 eV fanoFactor 0.15 vsound 9000 m/s # Longitudinal sound speed vtrans 5400 m/s # Transverse sound speed l0 e 16.9e-6 m #16.9e-5 m # 8e-6 m #16.9e-6 m 10 h 7.5e-5 m #hole and electron masses taken from Robert's thesis hmass 0.50 # per m(electron) # per m(electron) emass 0.91 0.19 0.19 valley 0 0 0 deg valley 90 90 0 deg valley 0 -90 -90 deg # Intervalley scattering (matrix elements) alpha 0.5 /eV acDeform 6.6 eV ivDeform 0.5e8 0.8e8 11e8 0.3e8 2e8 2e8 eV/cm ivEnergy 12.0e-3 18.4e-3 61.8e-3 18.9e-3 47.2e-3 58.8e-3 eV neutDens lell /cm3 epsilon 11.68 # Intervalley scattering (Linear and Quadratic models) ivModel Linear ivLinRate0 1.5e6 Hz # Fitted to Stanford test devices ivLinRate1 1.5 Hz # Fitted to Stanford test devices ivLinPower 4.0 ivOuadRate 3.5e-20 Hz # Fitted to Stanford test devices ivOuadField 3395 V/m # Fitted to Stanford test divices ivQuadPower 7.47

```
# Can also use temperature or energy
                                # Jacoboni & Reggiani
# Rate = ivLinRate0 + ivLinRate1 * E^ivLinPower
# Rate = sqrt((E^2-QuadField^2)^ivPower)
```



G4CMP User support

- Repository at https://github.com/kelseymh/G4CMP
- Historically development internal to SuperCDMS
- Hope to port internal issue tracker to github, and make use of github wikis, discussions, pull requests, etc.
- No official tag on GEANT4 forum, but relevant questions there usually get answered eventually

Thank you

