First WIMP search results from the XENONnT experiment

XENON

Context - Dark Matter Search

XENONnT Main Goal:

- **Direct detection** of Dark Matter (DM) interaction in ground-based \bigcirc experiment.
- Standard **WIMP** in the **[GeV, TeV] mass range**.
- **Signature:** WIMP **scattering off** a **xenon** target nuclei \bigcirc

Maxime Pierre

XENO

Context - Dark Matter Search

XENONnT Main Goal:

- **Direct detection** of Dark Matter (DM) interaction in ground-based experiment.
- Standard **WIMP** in the **[GeV, TeV] mass range**.
- Signature: WIMP scattering off a xenon target nuclei
 - Low-energy nuclear recoil
 - Sensitive to spin-independent and spin-dependent interaction

$$\frac{d\sigma_{\chi,N}}{dE_R} = \frac{1}{E_{\text{max}}} \left(\sigma_{SI} F_{SI}^2 + \sigma_{SD} F_{SD}^2 \right)$$

¹²⁹Xe (spin-1/2) | 26.4% n.a. ¹³¹Xe (spin-3/2) | 21.2% n.a.

Maxime Pierre

Maxime Pierre

Maxime Pierre

maxime.pierre@nikhef.nl

DM Experiment with a dedicated talk in the agenda of the GDR.

The XENON Collaboration

Maxime Pierre

The XENON Collaboration

Main Goal: Direct detection of WIMP dark matter candidate

Maxime Pierre

XENO

The XENON Program

Fourth generation of XENON experiment $oldsymbol{O}$

- Based on the same detection technology: dual-phase Time Projection Chamber
- Already **demonstrated the scalability** of this technology

Maxime Pierre

maxime.pierre@nikhef.nl

Present

The XENON Program

Fourth generation of XENON experiment

- Based on the same detection technology: dual-phase Time Projection Chamber
- Already **demonstrated the scalability** of this technology
- Operating at the INFN Laboratori Nazionali del Gran Sasso (LNGS) \bigcirc
 - → Underground laboratory with 1500 m overburden (3600 m.w.e)

Maxime Pierre

maxime.pierre@nikhef.nl

Present

The XENONnT experiment

Maxime Pierre

Fast upgrade from XENON1T

8 HBalko 222Rm Ne

Increased purity > 10 ms e⁻ lifetime

87 % (~60 %) projected neutron tagging efficiency with Gd-loaded (pure) water

Fast upgrade from XENON1T

★ 248 → 494 3" PMTs

Maxime Pierre

maxime.pierre@nikhef.nl

New Larger TPC

• x3 larger volume w.r.t. XENON1T

- \bigstar 2.0 t \rightarrow 5.9 t LXe active mass
- \star ~1 m \rightarrow ~1.5 m drift length
- \star ~1 m \rightarrow ~1.3 m diameter

Maxime Pierre maxime.pierre@nikhef.nl

Light and Charge readout

- Prompt scintillation signal (S1)
- Secondary proportional scintillation signal in GXe from drifted electrons (S2)

Maxime Pierre maxime.pierre@nikhef.nl

Light and Charge readout

- Prompt scintillation signal (S1)
- Secondary proportional scintillation signal in GXe from drifted electrons (S2)

Event reconstruction

- **3D Position:**
 - **Z** from drift time \bigcirc
 - (**X**, **Y**) from PMTs hit pattern $oldsymbol{O}$

• Energy
$$\rightarrow E = W \cdot (n_{ph} + n_e)$$

TPC Detection Principle

Maxime Pierre maxime.pierre@nikhef.nl

Light and Charge readout

- Prompt scintillation signal (S1)
- Secondary proportional scintillation signal \bigcirc in GXe from drifted electrons (S2)

Event reconstruction

- **3D** Position:
 - **Z** from drift time
 - (**X**, **Y**) from PMTs hit pattern $oldsymbol{O}$
- Energy $\rightarrow E = W \cdot (n_{ph} + n_e)$

Particle discrimination

Interaction type **Nuclear Recoil (NR)/Electronic** \bigcirc **Recoil (ER)** through **S1**/S2 ratio

$$\left(\frac{S2}{S1}\right)_{NR} < \left(\frac{S2}{S1}\right)_{ER}$$

Maxime Pierre maxime.pierre@nikhef.nl

Science run summary

- July 6 to Nov 10, 2021 (97.1 days)
- 95.1 days lifetime corrected
- 4.18 ± 0.13 tonnes Fiducial Volume
- Exposure: 1.1 tonne-year \bigcirc
- **Blinded data analysis**

Detector configuration

.....

XENON

FRANCE

Calibration

- Orift field: 23 V/cm
- Extraction field: 2.9 kV/cm (~50% e⁻ extr. eff.)
- 477 out of 494 PMTs working (~3.4% loss)
- LY & CY stable at 1% and 1.9% respectively

during blinded data taking

More about data quality monitoring in XENONnT with Quentin Pellegrini Talk, Friday @ 11:00

Fraction of ER events below NR median is 1.1 %

Maxime Pierre

maxime.pierre@nikhef.nl

Signal Characterisation and Correction

- ^{83m}Kr internal calibration source:
 - 2 successives IC @ 32.2 keV & 9.4 keV
 - Building block of the signal correction
 - Details in an upcoming analysis paper

Electronic Recoil Calibration

- ²²⁰Rn internal source
 - → ²¹²Pb β -decay offer ~flat energy spectrum in ROI
- ³⁷Ar internal source
 - ➡ ER line from K-Shell @ 2.8 keV
 - ➡ Validate detector performances & study threshold

Nuclear Recoil Calibration

- External AmBe neutron source
- \rightarrow Clear NR selection via coincident 4.4 MeV γ in nVeto

Detection efficiency

- Threshold driven by a 3-fold PMT coincidence for S1
- Validation with waveform simulation and data-driven methods

Selection efficiency

- Select Single Scatter interaction
- Quality cut evaluated using calibration data
 - Details in an upcoming analysis paper

Region of Interest (ROI)

- cS1: [0, 100] PE
- cS2: [10^{2.1}, 10^{4.1}] PE

Maxime Pierre

maxime.pierre@nikhef.nl

S1 en

Signal and Background Models

Maxime Pierre

Signal and Background Models

Electronic recoils

- Dominated by β -decay of ²¹⁴Pb (intrinsic to the LXe target)
- Suppressed by ER/NR discrimination

Maxime Pierre

Signal and Background Models

Electronic recoils

- Dominated by β -decay of ²¹⁴Pb (intrinsic to the LXe target)
- Suppressed by ER/NR discrimination

Accidental Coincidence

- Random pairing of isolated S1 & S2 signals
- Suppressed by dedicated analysis cuts

Maxime Pierre

Signal and Background Models

Electronic recoils

- Dominated by β -decay of ²¹⁴Pb (intrinsic to the LXe target)
- Suppressed by ER/NR discrimination

Accidental Coincidence

- Random pairing of isolated S1 & S2 signals
- Suppressed by dedicated analysis cuts

Surface

- ²¹⁰Pb plate-out on PTFE walls of the TPC
- Suppressed by FV.

Maxime Pierre

Signal and Background Models

Electronic recoils

- Dominated by β -decay of ²¹⁴Pb (intrinsic to the LXe target)
- Suppressed by ER/NR discrimination

Accidental Coincidence

- Random pairing of isolated S1 & S2 signals
- Suppressed by dedicated analysis cuts

Surface

- ²¹⁰Pb plate-out on PTFE walls of the TPC
- Suppressed by FV.

Nuclear recoils

- Radiogenic neutrons spontaneous fission & (α , n)-reactions
 - Rate prediction from NV tagging ~ 1.1 events
- Cosmogenics are negligible after µVeto
- ⁸B CE ν NS constrained by flux

Maxime Pierre

Signal and Background Models

Electronic recoils

- Dominated by β -dec \bigcirc
- Suppressed by ER/N

Accidental Coinci

- Random pairing of i
- Suppressed by dedi \bigcirc

Surface

- ²¹⁰Pb plate-out on P igodol
- Suppressed by FV. $igodoldsymbol{igo$

Nuclear recoils

Radiogenic neutron Rate predictio Cosmogenics are ne \bigcirc ⁸B CE ν NS constrain

Signal and Background Models

Electronic recoils

- Dominated by β -decay of ²¹⁴Pb (intrinsic to the LXe target) \bigcirc
- Suppressed by ER/NR discrimination

Accidental Coincidence

- Random pairing of isolated S1 & S2 signals $igodoldsymbol{0}$
- Suppressed by dedicated analysis cuts \bigcirc

Surface

- ²¹⁰Pb plate-out on PTFE walls of the TPC
- Suppressed by FV. $igodoldsymbol{0}$

Nuclear recoils

- Radiogenic neutrons spontaneous fission & (α , n)-reactions
 - Rate prediction from NV tagging ~ 1.1 events
- Cosmogenics are negligible after µVeto \bigcirc
- ⁸B CE ν NS constrained by flux

WIMP results

	Expectation
ER	134
Neutrons	$1.1^{+0.6}_{-0.5}$
CEvNS	0.23 ± 0.06
AC	4.3 ± 0.2
Surface	14 ± 3
Total	154
200 GeV/c ² WIMP	-
Observed	_

WIMP results

Unblinding

	Expectation	Best Fit
ER	134	135^{+12}_{-11}
Neutrons	$1.1^{+0.6}_{-0.5}$	1.1 ± 0.4
CEvNS	0.23 ± 0.06	0.23 ± 0.06
AC	4.3 ± 0.2	4.32 ± 0.15
Surface	14 ± 3	12^{+0}_{-4}
Total	154	152 ± 12
200 GeV/c ² WIMP	_	2.4
Observed	_	152

152 events in ROI, 16 in blinded region

Profile log-likelihood-ratio test statistic $oldsymbol{O}$

➡ No significant excess observed

WIMP spin-independent limit

- Community had agreed on prescriptions for **Power-Constrained Limit (PCL)**[1]
 - Wrong prescription for PCL critical **threshold** β_r in [1] ($\beta_r = 0.16$), defined on discovery power instead of rejection power w.r.t. [2]
 - ➡ Choice of minimum rejection power of 50% $(\beta_r = 0.50)$, i.e. constrain limit to median of sensitivity band
 - **Conservative choice** before the community re-discuss the topic and agree on a specific value

[1] D. Baxter et al, "Recommended conventions for reporting results from direct dark matter searches" [EPJC 81 (2021)] [2] G. Cowan, K. Crammer, E. Gross, O. Vitells, "Power-Constrained Limits". arxiv:1105.3166

From **blinded** analyses

Improved w.r.t. XENON1T by a factor x1.6 with a similar exposure

Same PCL applied to results of other recent LXe experiments

XENO

Conclusion & Outlook

Summary

- **XENONNT SR0** \rightarrow blinded Dark Matter search with 1.1 t x yr exposure
- SI limit of 2.6 x 10⁻⁴⁷ cm² (90% C.L.) @ 28 GeV/c²
- **Unprecedented low-ER background**

 \rightarrow ~ 16 events / (t . y . keV)

Prospects

- Further reduction of ER background by improved radon distillation flow path
- Gd-loaded water in the nVeto will improve our \bigcirc neutron tagging efficiency
- And even more physics! \bigcirc

Maxime Pierre

Even more physics to come!

WIMPs

- Spin-independent
 - PRL 119, 181301
 - PRL 121, 111302

Spin-dependent

PRL 122, 141301

Sub-GeV

- PRL 122, 071301
- PRD 103, 063028

Dark Matter

Light DM

- PRL 123, 241803
- PRL 123, 251801
- Bosonic DM
 - PRD 102, 072004

Contribute to the broadening of the physics goal of XENONnT

Maxime Pierre maxime.pierre@nikhef.nl

• $2\nu ECEC$ capture → Nature 568, 532 • $0\nu\beta\beta$ decay EPJC 80:785 (2020) Sun Solar ⁸B CEvNS ➡ PRL 126, 091301 ● Solar pp neutrinos ● EPJC 80:1133 (2020) Solar axions

PRD 102, 072004

Supernova

- Supernova neutrinos PRD 94,103009
- **Follow Daniel Layos talk,** \bigcirc

Thursday @ 14:00

FRANCE

Maxime Pierre maxime.pierre@nikhef.nl

Nuclear/Particle Physics

- $2\nu ECEC$ capture
 - → Nature 568, 532
- $0\nu\beta\beta$ decay
 - EPJC 80:785 (2020)

- PRL 126, 091301
- Solar pp neutrinos EPJC 80:1133 (2020)
- Solar axions
 - PRD 102, 072004

Supernova

- Supernova neutrinos PRD 94,103009
- Follow Daniel Layos talk,
 - **Thursday @ 14:00**

Contribute to the broadening of the physics goal of XENONnT

Reinterpreting results as a purely spin-dependent coupling to ¹²⁹Xe and ¹³¹Xe

Maxime Pierre maxime.pierre@nikhef.nl

XENO

Back-up: Energy reconstruction

Combined energy reconstruction from S1 and S2:

Energy reconstruction based on detector-dependent parameters: g1: photon detection efficiency. **Determined through severals calibrations** g2: charge amplification factor.

Maxime Pierre

