DarkSide-50

Light dark matter search

Timothée Hessel, on behalf of the DarkSide-20k collaboration

DarkSide-50

Efficient electronic recoil (ER) background rejection thanks to LAr scintillation **Pulse Shape Discrimination** through the "f90" observable (fraction of light detected in the first 90 ns).

The Dual-Phase TPC:

- 50 kg active mass of UAr
- 19 top + 19 bottom R11065 HQE 3" PMTs
- 36cm height, 36 cm diameter
- Low field of 0.2 kV/cm drift

Liquid Scintillator Veto against neutrons:

- 4 m diameter sphere
- Boron-loaded: 1:1 PC and TMB
- 110 8" PMTs
- LY ~ 500 pe/MeV

Cherenkov Water Detector:

- 11 m diameter x 10 m
- 80 PMTs

The DS-50 WIMP search

Accept

« Low mass » WIMP search

Scintillation (S1):

Detection efficiency $(g1) \sim 16\%$

Ionization (S2):

- Efficiency to extract 1 e- in the gas pocket ~100%
- Amplification factor (g2) ~ 23 pe/e-

Ionization response to nuclear recoil

- DS-50 calibration data with neutron sources

Dataset and data selection

New exposure:

- ▶ 650 live-days / 12 ton-day
- x1.8 exposure used in 2018

Quality cuts:

- Pulse-shape: remove anomalous pulses due to the pile-up of multiple S2's or S1+S2
- Acceptance: 95% at 4 Ne and 99% at >15 Ne

Selection cuts:

- Fiducialization against external backgrounds
- S2/S1 against S2's from alphas on the walls
- Time veto agains spurious (or "single") electrons

Data selection

- Select events with max fraction of pes in one of the 7 central top PMTs
- Acceptance ~ 41%

- S2/S1
- Cut tuned on calibration data
- Acceptance ~ 99%

Spurious electrons

Reject events with "anomalous"

- Reject correlated events (if within 20 ms from the previous one)
- Acceptance ~ 97%

Threshold and overall acceptance

Analysis threshold

- Overall acceptance almost flat: 38.2% at 4 e-
- Low-Ne region more depleted than in 2018

Internal 39Ar and 85Kr

Both 39Ar and 85Kr uniformly distributed in the LAr bulk.

39Ar activity: $0.7 \pm 0.1 \text{ mBq/kg}$

from high energy spectral fit.

85Kr activity: $1.8 \pm 0.1 \text{ mBq/kg}$

- from high energy spectral fit.
- from fast coincidence through metastable state.
- from decay time fit.

Both unique first-forbidden beta decays: additional atomic exchange and screening effects.

External gammas

- New background model from material screening campaign.
- spectrum.

Profile likelihood and systematics

the

$$\mathcal{L} = \prod_{i \in \text{bins}} \mathcal{P}(n_i | m_i(\mu_s, \Theta)) \times \prod_{\substack{\theta_i \in \Theta}} \mathcal{G}(\theta_i^0 | \theta_i, \Delta \theta_i) \times \prod_{i \in \text{bins}} \mathcal{G}(m_i^0 | m_i(\Theta), \delta m_i(\Theta))$$
Poisson probability of observing ni events in the ith-bin with respect to the expected ones, m_i(\mu_s, \Theta), with \mu_s the signal strength.
Gaussian penalties to account for the nuisance parameters (θ_0 and $\Delta \theta$ are the nominal central values ond uncertainties of the simulated sample

	Name	Source	Affected components
Amplitude	A_{FV}	uncertainty on the fiducial volume	WIMP, ³⁹ Ar, ⁸⁵ Kr, PMTs, Cryostat
	A_{Ar}	14.0% uncertainty on ³⁹ Ar activity	³⁹ Ar
	A_{Kr}	4.7% uncertainty on 85 Kr activity	⁸⁵ Kr
	A_{pmt}	11.5% uncertainty on activity from PMTs	PMT
	A_{cryo}	6.6% uncertainty on activity from the cryostat	Cryostat
Shape	\mathbf{Q}_{Kr}	0.4% uncertainty on the ⁸⁵ Kr-decay Q-value	⁸⁵ Kr
	Q_{Ar}	1% uncertainty on the ³⁹ Ar-decay Q-value	³⁹ Ar
	S_{kr}	spectral shape uncertainty on atomic exchange and screening effects	⁸⁵ Kr
	S_{Ar}	spectral shape uncertainty on atomic exchange and screening effects	³⁹ Ar
	Q_y^{er}	spectral shape systematics from ER ionization response uncertainty	³⁹ Ar, ⁸⁵ Kr, PMTs, Cryostat
	Q_y^{nr}	spectral shape systematics from NR ionization response uncertainty	WIMP

and uncertainties)

Background-only fit

WIMP-nucleon interaction

σsı Matter-Nucleon Dark

The Migdal Effect

Number of Electrons

Results confirmed by using Bayesian Networks (arXiv:2302.01830):

- Detector response model included in the likelihood function.
- Markov Chain Monte Carlo for posterior probability.

Leptophilic dark-matter

Conclusion

Improved light dark matter limits from 2018 analysis thanks to:

- **Calibration** of ionization response to ERs and NRs down to <1 keV
- Extended **exposure**
- Better data selection

Best SI WIMP-nucleon limits down to 1.2 GeV/c² (40 MeV/c²) WIMP mass without (with) Migdal effect.

Improved limits on WIMP-electron interactions, galactic ALPs, dark photons, and sterile neutrinos.

Thank you for your attention

Incoming results:

- Annual modulation
- Non-standard operators
- Low-mass sensitivity projection in DarkSide-20k

