

VTX detector for the Belle II Experiment

Roua BOUDAGGA

boudagga@cppm.in2p3.fr

20/09/2023

Belle II Experiment

01

Vertex detector VXD

VTX concept

Tower Jazz-Monopix 2 chip

OBELIX sensor : Optimized BELLE2 pIXel sensor

Belle II Experiment

- Located at the SuperKEK-B collider in Tsukuba, Japan
- Asymmetric e⁺- e⁻ collider at 4 / 7 GeV and \sqrt{s} = 10.58 GeV
- Target integrated luminosity of **50 ab⁻¹**
- Target instantaneous luminosity of **6x10³⁵ cm⁻² s⁻¹**
- $\circ~$ A long shutdown (LS2) is foreseen around year 2027

Current vertex detector VXD

- The main tracker device is the central drift chamber (CDC), which is complemented by a vertex detector (VXD).
- Its main task is the precise estimation of decay vertices in addition to very low momentum track finding.
- $\circ~$ Two different technologies compose the VXD :
 - $\circ~$ Two layers of DEPFET pixels (PXD)
 - Four layers of double sided silicon strip sensors (SVD)

VTX upgrade concept

- The VTX Upgrade Concept scheduled for 2027/2028
- A new fully pixelated CMOS detector to replace the VXD **VTX**
- Reduced material budget ~ 2.5%X0 instead of 3.8%X0 (sum of all layers)
- Improved tracking resolution
- Increase space-time granularity
- $\circ~$ 5 straight layers :
 - L1 and L2 (iVTX)
 - L3 to L5 (oVTX)
- o Identical chips on all layers: Optimized BELle II pIXel sensor
- Depleted Monolithic Active Pixel Sensors (DMAPS) process

VTX upgrade requirements

Fast sensor integration time : 25 to 100 ns

High granularity (pixel pitch in the range 30-40 μ m²)

Low material budget ~ 2.5%X0 (sum of all layers)

Limited power dissipation (maximum allowed of 200 mW/cm²)

Same sensor type for all layers

VTX detector mechanics

• L3 to L5 (oVTX):

- o Radii at 39, 90, 140 mm
- Carbon fiber support frame
- Cold plate with water cooling
- $~~\sim 0.4$ %X0 for L3
- $\circ \sim 0.8\%$ X0 for L4 & L5

Tower Jazz-Monopix 2 chip

TJ-Monopix readout scheme

- Developed for ATLAS experiment (2020)
 - FE derived from ALPIDE
 - Column-drain R/O architecture
- DMAPS Tower Jazz 180 nm process
- \circ 2 × 2 cm² chip : 512 × 512 pixels
- $\circ~$ Pixel pitch: 33.04 \times 33.04 μm^2
- Expected from design:
 - $\circ~\sim$ 100 e– min. threshold
 - 5-10 e– threshold dispersion (tuned)
 - \circ >97% efficiency at 10¹⁵ n_{eq} /cm²
 - $\circ \sim 5 e-noise$
 - Fully efficient with hit rate 120 MHz/cm²
 - \circ MIP \sim 2500e-

Pixel Matrix: TJ-Monopix 2

Kostas Moustakas thesis (https://cds.cern.ch/record/2782279?ln=fr)

- 17mmx17mm active area
- Four pixel Front-End (FE) flavors with differences in pre-amplifier, sensor coupling and biasing
- Two columns for Analog Monitoring
- Full custom in-pixel digital

Pixel Matrix: Analog Front End

20/09/2023

Aix*Marseille

Pixel Matrix: Analog Front End simulation

Objective : Reduction of the TJ-MONOPIX2 front-end (FE) preamplifier's power consumption

Normal FE pixel preamplifier	Improved normal (FE) pixel preamplifier	Cascode FE pixel preamplifier	Improved cascode (FE_casc) pixel preamplifier
Ibias = 500 nA	Ibias= 300 nA	Ibias = 500 nA	Ibias= 300 nA
Power consumption = 1µW	Power consumption = 650nW	Power consumption = 1µW	Power consumption =650nW
Peaking Time = 107,48 ns	Peaking Time = 129,46 ns	Peaking Time = 132,85 ns	Peaking Time = 182,34 ns
Gain = 1,74 mV/e-	Gain = 1,53 mV/e-	Gain = 3,35 mV/e-	Gain = 2,81 mV/e-
SNR = 39,1	SNR = 39,13	SNR = 56	SNR = 57,33
ENC = 2,55 e- rms	ENC= 2,55 e- rms	ENC = 1,78 e- rms	ENC = 1,74 e- rms

The power consumption can be reduced by 35%

Pixel Matrix: Analog Front End simulation

- On going : study of reducing the main biasing current in order to have low power dissipation
 - Lowering the main biasing current from 500 nA to 300 nA leads to a lowering of the power dissipation by 35% (for both Normal FE and cascode FE).
 - However by reducing the current Ibias , we have small variation on peaking time
 - The gain of the preamplifier is also reduced but it can be improved by varying the feedback current Ithr while keeping a signal-to-noise ration (SNR) as high as possible.

The cascode Front End flavor is chosen for OBELIX

TJ-Monopix 2 testing

- \circ Characterization on-going
 - Threshold (lowest value, dispersion)
 - Noise testing
 - ToT (Time Over Threshold) calibration

- $\circ~$ Setup composed by BDAQ53 board and DUT board through a display port
 - Use a external power supplies for the main powers
 - Software is based python3.8, use ananconda as environement, Basil3.2.0 as low level and TJMonopix2 software available on Silab Git repository

Banc de test de TJ-Monopix2

TJ-Monopix 2 testing

- Tests done in in Bonn, Pisa, HEPHY, CPPM, Gottingen
- The internal injection test :
 - A deliberate amount of known charge is introduced into the pre-amplifier of the system
 - The output generated is then quantified using the Time Over Threshold
- S-curve tests to determine threshold : as the injected charge, at which a 50% occupancy is reached
- The noise level can be determined from the slope of the S-curve S-Curve Plot

- Beam testing performed at DESY in Jun 2022 (4 GeV e-)
- Unirradiated chips
 - Preliminary settings used
 - \circ Very high thresholds \sim 550 e-
 - Hit efficiency: 99.54 +- 0.04 %
 - Cluster position residuals: 9.15 um

- New test beam in July 2023:
 - Lower threshold settings
 - o Angle scan
 - $\circ~$ Efficiency for irradiated chip $10^{14}-10^{15}~~n_{eq}$ /cm²
 - Data analysis ongoing

OBELIX sensor

Pixel matrix

- Copied from TJ-Monopix2
- Radiation tolerance granted
- Possible power optimisation

Power pads

- Power regulators added
- Simplified system integration

Periphery

- Main clk-in : 160MHz
- New end-of-column adapted to Belle II trigger
- Timestamped hits stored in memories
- Read-out when timestamp matched with trigger
- Single output at 320 MHz average bandwidth
- RD53 control/readout protocol

- The OBELIX sensor is under development
- Derived from the existing TJ Monopix2 chip
- Matrix size: 464x896 pixels
- Timestamp resolution: ~50ns
- \circ Power consomption < 1.5 W
- \circ Up to 10µs trigger latency
- Technology : Tower-Jazz 180 nm

OBELIX : Digital Blocks

• Module division : 4 main parts

1SCU – sync & clk divider: clock divider, Rx_data SIPO synchronization

2 CRU – Control Unit: Implementation RD53B interface, main functions: command decoder, global register configuration

3TRU – Trigger Unit: Manage pixel data from the matrix-EOC and wait for the trigger to pick them for output

TXU – TX Unit: generate output data and sequential output, main functions: data framing, serializer

20/09/2023

OBELIX Power Management

- Long linear ladders: voltage drop across ladder
- Narrow LDOs (Low Dropout) on both sides of the chip
- Input voltage 2 to 3 V
- LDO allows to compensate the voltage drop
- LDOs cause some dead area, but TJ-Monopix2 matrix requires power from the sides
- Aspect ratio of regulators as high as possible to keep dead area small

michael.karagounis@fh-dortmund.de

Aix*Marseille

Conclusion and outlook

- The upgrade to Depleted CMOS MAPS technology offers a promising path for enhancing the SuperKEK-B vertex detector
- The OBELIX chip is based on the analog part of TJ-Monopix2
- The careful characterization of the TJ-Monopix2 sensor matrix is crucial for the VTX Upgrade proposal
- Possibility to reduce the biasing current of the Front End in order to have less power consumption
- The OBELIX design is in development, with the aim of submitting it at the end of the year
- The VTX collaboration will contribute to a conceptual design report (CDR) for the Belle II upgrade by end
 2023 and continue to work on testing and developing the system

Thank you

Backup slides

boudagga@cppm.in2p3.fr

Depleted Monolithic Active Pixel Sensors

- Sensor and readout electronics on single wafer
- DMAPS combines the compactness of **CMOS sensor** with the performance of **hybrid planar silicon sensors** by :
 - using high-voltage compliant CMOS processes
 - o using an isolated deep well that collects charge and includes both analogue and digital circuits : monolithic pixel

- \circ $\;$ Large signal and fast charge collection
- \circ $\,$ Sensors can be thinned to 50 μm without signal loss $\,$
- Sensors can operate in a high rate environment (< 25 ns)
- \circ Good radiation tolerance

