

19-20 sept. 2023

The Micro-Vertex Detector (MVD) @The Compressed Baryonic Matter experiment (CBM) & the MIMOSIS program

On behalf of the IPHC-IKF-GSI (CBM-MVD) Collaboration

^aGoethe-Universität Frankfurt, Germany

^bUniversité de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

^cGSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany

^dHelmholtz Forschungsakademie Hessen für FAIR, Germany

e IJCLab, UMR9012 - CNRS / Université Paris-Saclav / France

^f Facility for Antiproton and Ion Research in Europe GmbH, Germany

(05P19RFFC1)

A.Besson, IPHC - Université de Strasbourg

1

The MVD @ CBM

September 2023

MVD Physics goals

- CBM @ FAIR (GSI)
 - Fixed target experiment to study the QCD phase diagram in the high baryon density region
- Micro-Vertex Detector (MVD)
 - ✓ High precision reconstruction of secondary vertices
 - e.g. charm mesons ~ 100 μm flying distance
 - High rate, high irradiation, non homogenous in time and space

Time fluctuations

MVD / MIMOSIS requirements

- Non uniform hit density in time and space
- High radiation environment, operating in vacuum

•	MIMOSIS chip	Parameter	Value	
		Technology	TowerJazz 180 nm	
	 Based on ALPIDE architecture 	Epi layer	\sim 25 μm	
	✓ Discriminator on 27x30µm ² pixel	Epi layer resistivity	$> 1 k \Omega cm$	
	 Multiple data concentration steps 	Sensor thickness	60 µ m	
		Pixel size	$26.88 \mu m imes 30.24 \mu m$	
	 Elastic output buffer 	Matrix size	1024×504 (516096 pix)	
	✓ 8 x 320 Mbps links (switchable)	Matrix area	\approx 4.2 cm ²	
~	 Triple redundant electronics 	Matrix readout time	5µs (event driven)	
		Power consumption	$40-70 \mathrm{mW/cm^2}$	

MIMOSIS = a milestone for Higgs factories (5 μ m / \leq 5 μ s)

Synergies

ECFA recognizes the need for the experimental and theoretical communities involved in physics studies, experiment designs and detector technologies at future Higgs factories to gather. ECFA supports a series of workshops with the aim to share challenges and expertise, to explore synergies in their efforts and to respond coherently to this priority in the European Strategy for Particle Physics (ESPP).								
(Goal: bring the entire e ⁺ e ⁻ Higgs factory effort together, foster cooperation across various projects; collaborative research programmes are to emerge							
	Partie 225 Partie							
			DRDT	< 2030	2030-2035	2035- 2040-2045 >204	;	
	Vertex detector ²⁾	Position precision Low X/X _o Low power High rates Large area wafers ³⁾ Ultrafast timing ⁴⁾ Radiation tolerance NIEL Radiation tolerance TID	3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.2 3.3 3.3					
	Tracker ⁵⁾	Position precision Low X/X _o Low power High rates Large area wafers ³⁾ Ultrafast timing ⁴⁾ Radiation tolerance NIEL Radiation tolerance TID	3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.2 3.3 3.3					
	Time of flight ⁷⁾	Position precision Low X/X _o Low power High rates Large area wafers ³⁾ Ultrafast timing ⁴⁾ Radiation tolerance NIEL Radiation tolerance TID	31,3.4 31,3.4 31,3.4 31,3.4 31,3.4 3.2 3.3 3.3	•				

. Jakobs, FCC Physics Workshop, Feb 2022

- ✓ ≥2025
- architecture adaptable to a fast sensor for a future e⁺e⁻ collider vertex detector
- ➡ Opportunity to study different designs/options

Process modifications

P-well Deep P-well Pin imp	cel Electrode size	Pu Pu Ny Ny Ny N-well P-well Deep P-well
P-type epitaxial layer P+ backside		

Pic from: Munker, Vertex 2018, Status of silicon detector R&D at CLIC Carlos, TREDI 2019, Results of the Malta CMOS pixel detector prototype for the ATLAS Pixel ITK

Pic from: Munker, Vertex 2018, Status of silicon detector R&D at CLIC Carlos, TREDI 2019, Results of the Malta CMOS pixel detector prototype for the ATLAS Pixel ITK

- standard process (3 available wafers)
- continuous n-layer (blanket) (3 wafers)
- additional p-implant (3 wafers)
- gap in n-layer (3 wafers)

Example: MIMOSIS (CBM-MVD) & Decision on options for sensing elements

W. Snoeys et al., NIM-A Vol.871 (2017) 90–96. Munker, Vertex 2018, Status of silicon detector R&D at CLIC

September 2023

Lessons learned up to now

Mimosis-1

Lab tests for all different versions (pixels, process) ~10 beam test campaigns over 2 years Single Event Effect studies (not covered here) 3 irradiations campaigns Large FTE effort

Noise

[21062] Pixels threshold map for VPH_fine scan (VBB_3_VCASN_150)

(c) Distribution of the threshold of the pixels over matrix C.

⇒ Noise under control,
both for AC / DC & standard/p-stop
even after irradiation:
FPN< 20 ENC ;
Thermal Noise < 20 ENC after Irr.

September 2023

A.Besson, IPHC - Université de Strasbourg

Efficiency/fake rate: Process comparison

Sefficiency / fake rate meets the requirement for all processes / pixel types

Efficiency vs Irradiations type

⇒ Radiation hardness meets the requirements

Resolution vs process

DC pixels

⇒ Expected spatial resolution difference between standard / p-stop process
 ⇒ Spatial resolution meets the requirements

Resolution / cluster size vs irradiation

Figure 15: Comparison of resolution and cluster size for various irradiation types - p-stop.

 \Rightarrow Spatial resolution only slightly degraded with irradiation (10¹⁴ n_{eq} + 5 Mrad)

Putting all together: Irradiations - efficiency - resolution

- Det eff. >> 99% for 10¹⁴ n_{eq}/cm² (p-stop)
- Reasonable performances after 3x 10¹⁴ n_{eq}/cm².
- Spatial resolution in the 5-6 μm range for p-stop process
- ✓ Noise under control
 - Fake rate < 10⁻⁶ for all pixel types tested.
 - "AC pixels + p-stop process" offer a very good compromise efficiency – resolution – radiation hardness
 - Performances matches requirements

 ⇒ Working point demonstrated after iraddiation (10¹⁴ n_{eq} + 5 Mrad)

Mimosis-1 Verification tools example

- Large and complex designs need
 - A hierarchy in the work flow to keep submission on schedule
 - Verification tools that can be run in a reasonable time
 - ✓ Knowledge of these tools is crucial
- Example Power-grid problem observed in MIMOSIS-1
 - ✓ Threshold shifts
 - Problem fixed quickly thanks to the verification tools

F. Morel DRD7 kick-off meeting

September 2023

First look into

Mimosis-2

- Evolution of MIMOSIS-1 with
 - > On-chip clustering
 - Triplication added
 - Various improvements
- Goal: validate all blocks/functionnalities before final production sensor (Mimosis-3)
- 25 & 50 μm epitaxial thickness versions
- Back from foundry Q2 2023
 - First tests in June 2023

MIMOSIS-2 first tests

• 9 chips diced and tested (from different wafers/process)

- MIMOSIS-2 does not work properly
 - Unexpected issues on the design (e.g. frequency limitation for some standard cells, reset)
 - ✓ Ongoing discussions with the foundry (NDA)
- Status:
 - The CBM-MVD collaboration worked hard the last 3 months to identify the sources of the problems.
 - The sources of all the identified problems has been understood.
 - the critical issues can probably be corrected by resubmitting with only 2 modified metal masks
 - The current version of MIMOSIS-2 will not allow to fully characterize its performances but we are confident it will allow to validate the additional features with respect to MIMOSIS-1 (on-chip clustering, triplication).

MIMOSIS-2: Action plans

- Focused Ion Beam correction on few chips (FIB)
 - The Focused Ion Beam process is a circuitry modification protocol that will allow to modify 2 x 2 columns.
 - ✓ It will confirm the problems identification
 - \checkmark It will allow to validate the clustering and the triplication.
 - ✓ FIB ongoing ⇒ time before feedback ~1 month
- Lessons learned
 - ✓ Unexpected issues which could have occurred in MIMOSIS-1
 - ✓ Analog simulation tools for the digital part provided valuable input
 - verification process improvement
 - MIMOSIS-2 will play its role (validation of the final design, verification process optimization)
- A possible compromise is to resubmit a fabrication with less options :
 - ✓ MIMOSIS 2.5 ?
 - Less different splits/process, less wafers, perhaps only AC matrix) to optimize costs vs delay vs tests.
 - Submitting a version closer to the final sensor design (e.g. only one pixel type on the whole matrix) might offer some added value to be estimated.
- Plans
 - Validate all corrections (in particular thanks to chips corrected with FIBs)
 - Take an educated decision within 1-2 months

896 pix

128 pix

September 2023

Summary

- MIMOSIS program
 - ✓ Dedicated to equip CBM-MVD
 - Step forward w.r.t ALPIDE performances
 - Demonstrator for future Higgs factories (« $5 \mu s 5 \mu m$ »)
 - MIMOSIS-1 demonstrated that the requirements can be fulfilled
 - ✓ Intensive test phase mandatory
 - demanding human resources effort by the CBM-MVD collaboration
 - ✓ Very valuable return of experience for the design and tests.
 - ✓ MIMOSIS-2
 - Critical issues met
 - Problems understood
 - Verification process improved
 - MIMOSIS-2 will still allow to validate the final architecture
 - Probable resubmission with cost/delays optimization
- The goal is still to deliver the final sensor (MIMOSIS-3) on time to CBM

MIMOSIS read-out architecture

- 3-stage buffering → to cope with in-homogeneous hit density
- Region readout out @ 20 MHz → 5 µs time of full matrix readout
- Elastic buffer → can store variable-size frames → required because of the data rate fluctuations
- Variable number of outputs → lower bandwidth but lower power consumption

Beam tests (MIMOSIS-1)

Date	Location	Beam	Goal
13. – 14. Mar 2021	GSI / mCBM	1 AGeV Pb	Single-Event-Effects (SEE)
23. – 24. May 2021	GSI / mCBM	1 AGeV Xe	SEE
07. – 13. Jun 2021	DESY	5 GeV e ⁻	Performance
19. – 26. Sep 2021	DESY	5 GeV e-	Performance (X-ray irradiated)
05. – 12. Oct 2021	CERN	~100 GeV π^{\pm}	Performance (neutron irradiated)
14. – 20. Feb 2022	DESY	5 GeV e-	Performance (mixed irradiated) ++
21. – 28. Mar 2022	COSY	0.3 – 3 GeV p	Performance, dE/dx?
23. – 29. May 2022	GSI/UNILAC	~4 MeV Ca	SEE, slow fragments
01. – 07. Sep 2022	CERN	~100 GeV π^{\pm}	Response to inclined tracks,

Shielding for PCB-ICs

(X-rays @ KIT)

Irradiation campaigns:

Date		Location	Radiation		
Jul – Aug 2021		Ljubjana (TRIGA)	~1 MeV reactor neutrons		
	Sep 2021	Karlsruhe (KIT)	~10 keV X-rays		
	Aug 2022	Karlsruhe (KIT)	~10 keV X-rays		
	Special than Meanwhile: 1	preparation			

Fair GmbH|GSI GmbH - Dr. Michael Deveaux -

M. Deveaux

E. AC / DC pixels

- DC Pixels (~ALPIDE) & AC pixels (top bias up to > 20V)
 - ✓ Amplifier / shaper / discriminator chain similar to ALPIDE in both scheme
 - ✓ Data driven readout
 - ✓ Pulse injection for calibration
 - ✓ Pixel masking options

Plans for 2024 – SEE by heavy ion impacts

• 5

20
21
28

0 29

36
37
38

46

53

Latch-up in ULTIMATE sensor G. Contin, JINST 11 C12068 (2016)

30

-30 -

Initial worry:

- Device destruction by latch-up (reversible short cut).
- So far not observed.

Observed with MIMOSIS-1

- Power regulators destabilized by HI-impact => Bit flip.
- Existing protection failed.
 Bug fixed in MIMOSIS-2.
- Needs checks.

MIMOSIS-1 @ µX0

Repeat test with heavier ions.

Bit flip (color=bit nmb) vs. ion impact p

10 µm

 Search for possible additional weak points if existing.

Beam time requested and granted at GSI UNILAC.

Localized irradiations

- CYRCE platform @IPHC
 - ✓ https://cyrce.fr/
 - ✓ Delivers 25 MeV proton beams
 - Niel factor ~1.8
 - $\checkmark\,$ Can control precisely the dose
 - CYRCE beam characterization
 - High rate tests
 - Localized irradiations

- Check performances uniformity with non uniform irradiations to mimic the expected MVD irradiation non uniformity
- First tests performed with MIMOSIS-1 in Q2 2023 ⇒ procedure validated

Thickness homogeneity measurements

