NA62, HIKE and NuTag

$Mathieu \ P \ {\tt ERRIN} \ - \ T \ {\tt ERRIN}$

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France.

Outline

- NA62 and the GigaTracKer
- Results from NA62
- Future Projects
 - High Intensity Kaon Experiment (HIKE)
 - Tagged Neutrino Experiment (NuTAG)

NA62 and the GigaTracker

- Kaon physics experiment (CERN) aiming for $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu})$ at 15% by 2025
 - Challenge: BR is $(8.4 \pm 1.0) \cdot 10^{-11}$ with two neutrinos in final state
 - Previous results from E787 (BNL) using **stopped beam**
 - Main kinematical variable is the squared missing mass: $m_{miss}^2 = |p_K p_{\pi}|^2$ —
- NA62: **decay in flight** technique at CERN SPS
 - Continuous beam: 750MHz, (6% K⁺, 24% p, 70% π^+) at 75 GeV/c
 - **Decay in flight** technique requires a **beam spectrometer:** GigaTracker GTK

GTK

• Beam Spectrometer

- Measures momentum, angle and time of all beam particles
- Sustains high particle flux (750MHz)
- Minimized material budget
- Design (~2009)
 - Three (four from 2021) planes of time resolved pixel

Beam Rate	800 MHz - 1 GHz
	$1.3 \mathrm{MHz}/\mathrm{mm}^2$
Peak Radiation	4.10^{14} 1MeV $n_{eq.}/cm^2$
	for 200 days
Efficiency	99%
Momentum Resol.	0.2%
Angular Resol.	16 µrad
Pixel Time Resol.	< 200 ps RMS
Material Budget	$0.5\% { m X}_0$

Need for Timing

- Association with other NA62 sub-detectors based on time coincidence
- **Tracking in GTK** relies on time (little geometrical redundancy with 3 planes)

Typical Event at 30% of nominal intensity

Need for Timing

- Association with other NA62 sub-detectors based on time coincidence
- **Tracking in GTK** relies on time (little geometrical redundancy with 3 planes)

Need for Timing

- Association with other NA62 sub-detectors based on time coincidence
- **Tracking in GTK** relies on time (little geometrical redundancy with 3 planes)

Typical Event at 30% of nominal intensity

TDCpix pixel detector ASIC with 100 ps time stamping, Nucl. Inst. Meth. A, 2023, 168331

GTK Design

• Single 3×6 cm² sensor (n-in-p) hybridized to 2×5 TDCPix

• TDCPix:

- a custom made chip with **97ps TDC bin** (the best time precision on the market since 2009)
- significant power consumption (1.7W/cm^2)

Sensor Side

TDCpix pixel detector ASIC with 100 ps time stamping, Nucl. Inst. Meth. A, 2023, 168331

GTK Design

• Single $3 \times 6 \text{ cm}^2$ sensor (n-in-p) hybridized to 2×5 TDCPix

• TDCPix

- a custom made chip (IBM 130nm) with **97ps TDC bin** (the best time precision on the market since 2009)
- $300 \times 300 \ \mu m^2$ pixels
- significant **power consumption** (1.7W/cm^2)
- Microchannel cooling plate $(1^{st} \text{ implementation})$
 - $200\mu m$ thick
 - 150 channels of $200 \times 70 \mu m$
 - Liquid C_6F_{14} at -10°C, 3g/s

Cross Section

Cooling Side

Time resolution

- Precise **time calibration** of the pixel is required to get good time resolution
- Performance
 - Track Time resolution: 75 ps
 - Hit Time resolution: 130 ps (gauss fit)
 - Dominant contribution is the **weighting filed potential** and **charge straggling**.
- Time resolution improve with **higher bias**

Time resolution stability

- TDCPix also accept **p-in-n sensor** which has much worse time resolution
- Time resolution degrades with **integrated fluence**
- Performance are recovered by increasing the **bias voltage** (and annealing)

Kinematics for $K^+ \rightarrow \pi^+ \nu \nu$

- Recall: main analysis variable is squared missing mass $m^2_{miss} = |p_K p_{\pi}|^2$
- Resolution of the m^2_{miss} evaluated on a sample of $K^+ \rightarrow \pi^+ \pi^0$

Outline

- NA62 and the GigaTracKer
- Results from NA62
- Future Projects
 - High Intensity Kaon Experiment (HIKE)
 - Tagged Neutrino Experiment (NuTAG)

Prospects: Run 2 (2021-2025) with nominal beam intensity, modified beamline and additional detectors.

Aim to measure BR($K^+ \rightarrow \pi^+ \nu \nu$) at O(15%) precision by LS3

2023

Neutrino Tagging at NA62

- Proof-of-principle of a novel method for accelerator based experiments [Eur. Phys. J. C (2022) 82:465]
- Associate each v interaction to the v reconstructed kinematically at **production (** K^+ , $\pi^+ \rightarrow \mu^+ v_{\mu}$) $p_{\nu} = 77.3 \text{GeV/c}$
- ➢ Pristine access to neutrino flux
- \blacktriangleright Excellent v energy resolution: <1%
- [GeV²/G Observed events • NA62 as tagged-v experiment 0.02 $N_{K\mu\nu}^{inter} = 0.23 \pm 0.02$ $> \sim 10^{12} \text{ K}^+ \rightarrow \mu^+ v_\mu$ per year \succ v_u interactions in the 20 ton of LKr $p_{\mu^{4}}$ \succ K⁺ and μ ⁺ reconstructed in trackers * Two tagged v candidates $\frac{\lambda}{d}$ -0.02 100 200 300 O. observed!

Signal

Distance between v interaction in LKr and expected v position [mm]

100

Full details on B. De Martino Talk @ NuFact-23

 $N_{Bka} = 0.04 \pm 0.02$

200

v interaction

NA62 Run 12477 Evt 2333361

MUV3

0.015 0

0.01

₹ 10.005

12mm

300

Toward a full scale tagged ν experiment

- Ideal tool to study **neutrino interactions** at a **short baseline experiment**
 - dominant systematics uncertainties for DUNE/T2HK

- Ideal tool to study neutrino oscillations at a long baseline experiment
 - excellent energy resolution (<1%)
 - low systematic uncertainties
 - oscillation studied event-by-event:
 ν tracked from creation to detection
- Need a tracker able to sustain very high beam particle flux 10-100 Mhz/mm², $10^{12}\pi^{+}/s$

Precision on δ_{CP} is up to 10 times better than at upcoming experiments

Outline

- NA62 and the GigaTracKer
- Results from NA62
- Future Projects
 - High Intensity Kaon Experiment (HIKE)
 - Tagged Neutrino Experiment (NuTAG)

Future: NA62 \rightarrow HIKE

- **HIKE** a multi-purpose high-intensity kaon decay-in-flight experiments
 - Phase 1: 2031-2041 ($K^+ \rightarrow \pi^+ \nu \nu$ at ~5% precision)
 - Phase 2: 2043-2048 ($K_L \rightarrow \pi^0 l^+ l^-$ at ~20% precision)

• High intensity beam

- 4-6 times NA62
- New beam tracker is needed

	NA62 GigaTracker	New beam tracker
Single hit time resolution	< 200 ps	< 50 ps
Track time resolution	< 100 ps	< 25 ps
Peak hit rate	2 MHz/mm ²	8 MHz/mm ²
Pixel efficiency	> 99 %	> 99 %
Peak fluence / 1 year $[10^{14} 1 \text{ MeV } n_{eq}/\text{cm}^2]$	4	16

HIKE Beam Tracker

- Design similar to GigaTracKer, but using the timeSPO technology (initially developed for LHCb)
 - new **sensor** with better time reso: 3D trench pixels

Charged-particle timing with 10 ps accuracy using TimeSPOT 3D trench-type silicon pixels. Front. Phys., 2023.

• new electronics $(28nm, <1.5W/cm^2)$

Timespot1: a 28 nm CMOS Pixel Read-Out ASIC for 4D Tracking at High Rates, JINST 18 P03034

- cooling **frame** instead of plate to reduce material budget to $0.3\% X_0$
- operated **tilted** by 20° to get full efficiency

Α

55 um

55 µm

В

40 um

55 µm

Radiation Hardness and Efficiency

- No significant performance degration observed up to $2.5 \cdot 10^{16} n_{eq}/cm^2!$
- Detection efficiency fully recovered with a 20° tilt angle

A. Lampis et al 2023 JINST 18 C01051

Neutrino Tagging

• Specifications are even more stringent than for HIKE, as to be competitive, a tagged neutrino experiment need to track about $10^{12} \pi/s$

Specification	Neutrino	HIKE	NA62 (in
specification	Tagging		operation)
$Flux (MHz/mm^2)$	O(10 - 100)	8	2
Fluence (n_{eq}/cm^2)	10^{16-17}	$8 \cdot 10^{14}/y$	$2 \cdot 10^{14}/y$
Hit Time Reso. (ps)	< 20	50	200
Det. Efficiency $(\%)$	> 99	> 99	> 99
Thickness (% of X_0)	< 0.5	< 0.5	< 0.5

Tracker for Neutrino Tagging

- **TimeSPOT technology** can allow to build such tracker, but requires very advanced integration techniques
- Cooling power will ultimately determine the time resolution (>1.5W/cm²)
- **3D integration** is considered with an **active cooling plate** to distribute power, clock, data (10 Gbps/cm² with photonics intergrated circuits on cooling plate) and reach the desired efficiency and low material budget

Summary and Conclusions

- NA62 has open **a new road** to study **very rare decays** with **4D trackers**
- 4D tracker could also open **a new road** for **high precision neutrino physics** with the neutrino **tagging** technique
- The first two tagged neutrino candidates have been observed at NA62

- Both projects are to be continued with HIKE and the development of a tagged neutrino experiments (SBL and LBL)
- Impressive ($\sigma_t=10$ ps) technological achievements have been reached and pave the way for the next generation of 4D trackers