Antonin MAIRE – IPHC Strasbourg Tuesday, 19 Sept 2023– **Pixel workshop within GdRs**

ALICE3 Lol, CERN-LHCC-2022-009

A. Physics landscape

- B. ALICE3 : general layout
- C. ALICE3 sub-detectors : vertexer and trackers

,	

Antonin.MAIRE@cern.ch - IPHC Strasbourg / Pixel Wkshop 2023

By 2032, \approx any inclusive identified measurements \approx done.

 \rightarrow Stakes = multi-differential and/or correlated measurements (v_n, HBT, double-identified production, f(multiplicity), f(event activities) ...)

QGP physics = a particle of interest wrt to its *context*, *i.e.* QCD surroundings in the same event

\rightarrow Need a focus on :

- all identified particles (*u,d,s,c,b*)
- access to [ultra]low p_T ([0.05-0.15]- O(10) GeV/c)
- $\forall p_T, \forall y, \text{ high AxEff(tracks)}$ AxEff $\approx 100\%$?
- ideally, done on an event-by-event basis,
- made available through huge integrated luminosities, both in AA and in pp

Criteria to define how the ideal experiment(s) should look like...

.2 – HL-LHC QCD+QGP : for which physics cases ?

- $\chi_{c1}(3872)(\overline{ccuu})$, $T_{CC}^+(\overline{ccud})$

- ...

Antonin.MAIRE@cern.ch - IPHC Strasbourg / Pixel Wkshop 2023

1.3 – Phys. case : ex. 1 – net quantum fluctuations

See also EMMI, arXiv:2001.08831

Antonin.MAIRE@cern.ch - IPHC Strasbourg / Pixel Wkshop 2023

.4 – Phys. case : ex. 2 – strangeness tracking in ALICE3

Figure 18: (left) Illustration of strangeness tracking from full detector simulation of the Ξ_{cc}^{++} decay into $\Xi_c^+ + \pi^+$ with the successive decay $\Xi_c^+ \to \Xi^- + 2\pi^+$. (right) Close-up illustration of the region marked with a red dashed box in the left figure, containing the five innermost layers of ALICE 3 and the hits that were added to the Ξ^- trajectory (red squares).

$II_{-1} - ALICE3 : Lol Layout (Run 5, ≥ 2033)$

ALICE3 Lol, CERN-LHCC-2022-009

Tracker,

Compact $(R_{outer TOF} \approx 85 \text{ cm})$ ultra-light (layer 0 ~ 0.1 % x/X₀) All-Si ($\approx 60 \text{ m}^2$) with high-performance tracking (Axɛ, granularity, ...) with **PID** capabilities (iTOF, oTOF, RICH, ECal, µ) over wide **acceptance** : • |y| < 4• $p_T \in [0.05; \mathcal{O}(10)]$ GeV/c To collect integrated **MB luminosities** :

- \approx 1 MHz recorded readout
- *O*(0.5 fb⁻¹) / month pp
- *O*(5.6 nb⁻¹) / month Pb-Pb

-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
					_	,		1		1	-	,				
					1		1			I	1					
	_	_	_		-	_	_	_	_	-	_	_		-	_	,

II. $_2 - ALICE3$: proximity to (e⁺e⁻) Higgs factories

A. Conclusion 1 out of 4 (2021 ECFA roadmap) :

"Develop cost-effective detectors matching the precision physics potential of a next-decade <u>Higgs factory</u> with beyond state-of-the-art performance, optimised <u>granularity</u>, <u>resolution</u> and <u>timing</u>, and with ultimate <u>compactness</u> and minimised <u>material budgets</u>"

Courtesy J. Baudot

Antonin.MAIRE@cern.ch - IPHC Strasbourg / Pixel Wkshop 2023

Antonin.MAIRE@cern.ch - IPHC Strasbourg / Pixel Wkshop 2023

IV.2 – ALICE3 : PID with TOF + RICH

Figure 19: Analytical calculations of the $\eta - p_T$ regions in which particles can be separated by at least 3σ for the ALICE 3 particle-identification subsystems embedded in a 0.5 T magnetic field. Electron/pion, pion/kaon and kaon/proton separation plots are shown from left to right.

Figure 20: Analytical calculations of the $\eta - p_T$ regions in which particles can be separated by at least 3σ for the ALICE 3 particle-identification systems embedded in a 2.0 T magnetic field. Electron/pion, pion/kaon and kaon/proton separation plots are shown from left to right.

10.01				
	10	1 -	_	
	10	/ 1	7	
	10	/		

ALICE3 LoI, CERN-LHCC-2022-009, section 3.2.2

Antonin.MAIRE@cern.ch – IPHC Strasbourg / Pixel Wkshop 2023

$IV._2 - ALICE3$: PID with (CMOS) TOF

	Inner TOF	Outer TOF	Forward TOF
Radius (m)	0.19	0.85	0.15-1.5
z range (m)	-0.62-0.62	-2.79-2.79	4.05
Surface (m ²)	1.5	30	14
Granularity (mm ²)	1×1	5×5	1×1 to 5×5
Hit rate (kHz/cm ²)	74	4	122
NIEL (1 MeV n_{eq}/cm^2) / month	$1.3 \cdot 10^{11}$	$6.2\cdot 10^9$	$2.1 \cdot 10^{11}$
TID (rad) / month	$4\cdot 10^3$	$2 \cdot 10^2$	$6.6\cdot 10^3$
Material budget ($\%X_0$)	1-3	1-3	1-3
Power density (mW/cm ²)	50	50	50
Time resolution (ps)	20	20	20

Table 11: TOF specifications.

<u>3 options</u> :

- MAPS with gain layer (≈ ARCADIA project)
- Low Gain Avalanche Diodes (LGAD) (CMS MTD fwd, ATLAS HGTD)
- Single Photon Avalanche Diode (SPAD)

V.1 – ALICE3 : vertexer and tracker, layout

ALICE3 Lol, CERN-LHCC-2022-009

Figure 77: Schematic R - z view of the full tracker (top) and of the vertex detector separately (bottom). The blue lines represent the tracking layers. The FCT disks are marked in green. In addition, the beampipe and vacuum vessel of the vertex detector are shown in grey.

V.2 – ALICE3 : vertexer and tracker, location

	Layer	Material	Intrinsic	Barrel l	ayers	Forward d	iscs	
		thickness $(\%X_0)$	resolution (µm)	Length $(\pm z)$ (cm)	Radius (r) (cm)	Position ($ z $) (cm)	<i>R</i> _{in} (cm)	R _{out} (cm)
_	0	0.1	2.5	50	0.50	26	0.005	3
Inner tracker	1	0.1	2.5	50	1.20	30	0.005	3
	2	0.1	2.5	50	2.50	34	0.005	3
	3	1	10	124	3.75	77	0.05	35
Middle tracker)	4	1	10	124	7	100	0.05	35
	5	1	10	124	12	122	0.05	35
	6	1	10	124	20	150	0.05	80
	7	1	10	124	30	180	0.05	80
	8	1	10	264	45	220	0.05	80
Outer tracker	9	1	10	264	60	279	0.05	80
	10	1	10	264	80	340	0.05	80
	11	1				400	0.05	80

ALICE3 Lol, CERN-LHCC-2022-009

Table 8: Geometry and key specifications of the tracker.

V.3 – ALICE3 : IRIS vertexer, 3D drawings

Antonin.MAIRE@cern.ch - IPHC Strasbourg / Pixel Wkshop 2023

V.5 – ALICE3 : outer tracker, drawings

ALICE3 Lol, CERN-LHCC-2022-009

Figure 83: Sketch of the outer tracker mechanics. Modules assembled in staves structures are visible as well as services and power lines. Furthermore, the overlap of the staves can be seen.

Among which : ...

÷				-	-	-	-	-	-	-	-	-	-	-	-	
					~			,			_					
١.				L	6		1			L		/				
				1	U	,	1			L	1					
-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	1

V.6 – Overview : vertexer and tracker specifications

Time resolution: bunch tagging, *i.e. O*(100 ns)

A Large Ion Collider Experiment

ALICE 3 Vertex Detector and Outer Tracker — in numbers

	Verte	x Det	tector	Middl	e Lay	ers	Outer	r Trac	cker	ITS3	ITS2
Pixel size (µm²)	÷ 9	0(10) x 10)	• 2.8	O(50	x 50)	• 2.8	O(50) x 50)	O(20 x 20)	O(30 x 30)
Position resolution (µm)		÷ 2	2.5		• 2	10		• 1	2 10	5	5
Time resolution (ns RMS)		÷ 10	100		÷ 10	100		÷ 10	100	100* / O(1000)	O(1000)
Shaping time (ns RMS)		÷ 25	200		÷ 25	200		÷ 25	200	200* / O(5000)	O(5000)
Fake-hit rate (/ pixel / event)		~	< 10 ⁻⁸		~	< 10 ⁻⁸		~	< 10 ⁻⁸	<10 ⁻⁷	<< 10 ⁻⁶
Power consumption (mW / cm ²)		+ 75%	6 70		_	20	_		20	20**	47 / 35***
Particle hit density (MHz / cm ²)		• 20	94			1.7	6	67%	0.06	8.5	5
Non-Ionising Energy Loss (1 MeV n _{eq} / cm ²)	• 300	0 1	x 10 ¹⁶	• 10	00 2	x 10 ¹⁴	~	5.6	x 10 ¹²	3 x 10 ¹²	3 x 10 ¹²
Total Ionising Dose (Mrad)	•	1000	300		• 1	0 5	~		0.2	0.3	0.3
Surface (m ²)		• 2.5	0.15		÷	2 5		• 6	57	0.06	10
Material budget (% X ₀)			0.1			1			1	0.05	0.36 / 1.1 ***
* goal, not crucial, like not possible due to pow	ver bud	lget		*	* Pixe	l matrix	(***	nnermost layers /	outer layers

CERN

A. ITS2 in ALICE₂ in runs 3+4 B. ITS3 in ALICE₂ in run 4 C. Outer Tracker in ALICE₃ run 5 D. Template for QCD+QGP physics cases

c	-	-		-	-	-	-	-	-		-	-	-	-	-
					~			,		-	_				
				L	x		1	/		Т	1				
				Ľ	U	,	1			L	1				
-	-	-	-		-	-	-	-	-	-	-	-		-	-

Antonin.MAIRE@cern.ch - IPHC Strasbourg / Pixel Wkshop 2023

A. – ALICE2 run 3+4

LHC running plan

A.1 – ALICE-2 : ALICE campaigns in LHC run 3+4

A.2 – ALICE-2 : TDRs for run 3 detectors

Antonin.MAIRE@cern.ch - IPHC Strasbourg / Pixel Wkshop 2023

A.3 – ALICE-2 upgrades : overview

TIME PROJECTION CHAMBER (TPC) UPGRADE

New GEM (gas electron multipliers) technology replaced the old wire chambers to significantly increase the readout rate of the TPC.

f the TPC.

NEW INNER TRACKING SYSTEM (ITS)

Seven layers comprising a total of 12.5 billion monolithic active silicon pixel sensors distributed over a 10m² surface area, the largest pixel detector ever built.

NEW MUON FORWARD TRACKER (MFT)

Five disks of monolithic active silicon pixel sensors, installed in front of the muon spectrometer to extend precision measurements to the forward rapidity region.

NEW READOUT SYSTEM

The new readout system is designed to handle increased data throughput by combining all the computing functionalities needed in the experiment.

NEW FAST INTERACTION TRIGGER (FIT)

Combining three detector technologies, the FIT detector serves as an interaction trigger, online luminometer, indicator of the vertex position and forward multiplicity counter.

NEW BEAMPIPE WITH A SMALLER DIAMETER (36.4 mm)

The vacuum tube that carries protons and ions to the collision point inside the detector has an 870-mm-long central beryllium section that has an inner radius of 18.2 mm and measures 0.8 mm in

÷.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
÷			~	2	n	,		1		1	-	1				
÷			4	4	Ζ		Ι			I	1					
5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

A.4 – Pixel detectors : Monolithic Active vs Hybrid techno.

Antonin.MAIRE@cern.ch - IPHC Strasbourg / Pixel Wkshop 2023

A.5 - Background: MAPS instrumental background

sens. layer \Rightarrow q-collect \Rightarrow ampli \Rightarrow analog treat \Rightarrow A-D conv \Rightarrow digital proc Hybrid pixel sensor \rightarrow sensor: +FEE

CMOS pixel sensor \rightarrow CPS:

Ex: sensor using TowerSemiconductor 180-nm CMOS Imaging Process

ITS2 ALPIDE – 3D and 2D views of <u>2x2</u> pixels (*Here, in the 50-μm-thick version...*)

A.6 – Background : ITS2+MFT, MAPS-based detectors for Run

Antonin.MAIRE@cern.ch - IPHC Strasbourg / Pixel Wkshop 2023

A.7 – ITS2+MFT : pictures

ALICE-PHO-GEN-2021-002

OPEN-PHO-EXP-2020-004

ALICE-PHO-ITS-2021-002

Antonin.MAIRE@cern.ch - IPHC Strasbourg / Pixel Wkshop 2023

A.8 – ALICE-2 continuous readout ? : what it costs...

NB : Time frames \approx **10 ms** Vs bunch spacing at LHC \approx **25 ns**

B. – ITS3 in ALICE2 run 4

LHC running plan

B.1 – **ITS3 detector** : the idea in one glimpse

Antonin.MAIRE@cern.ch - IPHC Strasbourg / Pixel Wkshop 2023

B.₂ – **ITS3 detector** : some key figures

- time resolution $\leq 2-5 \ \mu s$
- Radiation hardness : \dot{NIEL} : >3x10¹² 1-MeV n_{eq} .cm⁻²

// TID: >0.3 Mrad

30 / 17

Antonin.MAIRE@cern.ch - IPHC Strasbourg / Pixel Wkshop 2023

B.1 – **ITS3** project : characteristics and keywords

1./ Can we get closer to IP ?

2./ Can we get lighter in terms of material budget?

Starting point : ITS2 Inner Barrel one layer Statements :

- Si = 1/7 of the overall material budget
- Irregularities = from support + cooling...

<u>1</u>. Get rid of cooling ?

2. Remove the Flexible Printed Circuit (power+data transfer) ?

<u>3.</u> Shift the mechanical support to outside acceptance ?

B.₂ – **ITS3** project : characteristics and keywords

1./ Can we get closer to IP ?

2./ Can we get lighter in terms of material budget ?

Starting point : ITS2 Inner Barrel one layer Statements :

- Si = 1/7 of the overall material budget
- Irregularities = from support + cooling...

<u>**1.</u>** Get rid of cooling ? \rightarrow Possible if reduction of power consumption i.e. < 20 mW/cm² on the pixel matrix</u>

2. Remove the Flexible Printed Circuit (power+data transfer) ?

<u>3.</u> Shift the mechanical support to outside acceptance ?

B.₃ – **ITS3** project : characteristics and keywords

1./ Can we get closer to IP ?

2./ Can we get lighter in terms of material budget ?

Starting point : ITS2 Inner Barrel one layer Statements :

- Si = 1/7 of the overall material budget
- Irregularities = from support + cooling...

<u>1.</u> Get rid of cooling ? \rightarrow Possible if reduction of power consumption i.e. < 20 mW/cm² on the pixel matrix

<u>2.</u> Remove the Flexible Printed Circuit (power+data transfer) ?

 \rightarrow integrate it on the metal layers of the chip itself

<u>3.</u> Shift the mechanical support to outside acceptance ?

ċ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
					_			,			-					
۰.			1	2	4			/		L		/				
			~)	J)	1			L	1					
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

B.4 – **ITS3** project : characteristics and keywords

1./ Can we get closer to IP ?

 \rightarrow thinned slicon [\leq 50 µm] \rightarrow bending Gain extra stiffness with curled sensor

B.I. 4 – ITS3 project : characteristics and keywords

1./ Can we get closer to IP ?

2./ Can we get lighter in terms of material budget?

Starting point : ITS2 Inner Barrel one layer Statements :

- Si = 1/7 of the overall material budget
- Irregularities = from support + cooling...

<u>**1.</u>** Get rid of cooling ? \rightarrow Possible if reduction of power consumption i.e. < 20 mW/cm² on the pixel matrix</u>

2. Remove the Flexible Printed Circuit (power+data transfer) ?
→ integrate it on the metal layers of the chip itself

3. Shift the mechanical support to outside acceptance ? \rightarrow thinned slicon [\leq 50 µm] \rightarrow bending Gain extra stiffness with curled sensor

B.V.₂ – ALICE 2.1 : ITS3

 Move from 180 nm CMOS technology to 65 nm (Tower foundry)
 → Wafer-scale chip, thinned (< 50 µm) + to be bent

Beam test of *bent* ALPIDE chips (i.e. ITS2 chip 50-µm thick, 180 nm technology) (*arXiv:2105.13000*)

<u>Project milestones</u> :

- . Eol ALICE-PUBLIC-2018-013
- . Lol CERN-LHCC-2019-018
- . 2019 : LHCc blessing for R&D
- → Engineering run 2 = 2022-05, on-wafer stitching among chips
 . TDR by spring 2023

Mechanical integration cooling test

36 / 17

Antonin.MAIRE@cern.ch – IPHC Strasbourg / Pixel Wkshop 2023

B.V.2 – ALICE 2.1 : ITS-3, keys + physics cases

 $\begin{array}{l} \underline{Keys}:\\ & |\eta| < 2.0\\ News wrt Run 3\\ & finer : \mathcal{O}(15x15) \ \mu m^2\\ & lighter : ultra-low material budget\\ & (< 0.05\% \ x/X^\circ \ per \ layer)\\ & loser (r_{_{\rm ITS3}} > 1.8 \ cm) \end{array}$

- improve track pointing resolution (Heavy-flavour vertexing at low p_T) prompt/non-pr Λ_c⁺, D_s⁺, Ξ_c ... + Λ_b[°] ... + Λ_cn (c-deuteron), nΛ_cn (c-triton) ?
- "strangeness tracker", 1st implementat $(\Xi^{\pm}, \Omega^{\pm}, \Sigma^{\pm})$

Antonin.MAIRE@cern.ch - IPHC Strasbourg / Pixel Wkshop 2023

c. – OT brainstorming

Time resolution: bunch tagging, *i.e. O*(100 ns)

A Large Ion Collider Experiment

ALICE 3 Vertex Detector and Outer Tracker — in numbers

	Verte	x Det	tector	Middl	e Lay	/ers	Oute	r Trad	cker	ITS3	ITS2
Pixel size (µm²)	÷ 9	O(10) x 10)	• 2.8	O(50) x 50)	• 2.8	O(50) x 50)	O(20 x 20)	O(30 x 30)
Position resolution (µm)		÷ 2	2.5		• 2	2 10		•	2 10	5	5
Time resolution (ns RMS)		÷ 10	100		÷ 10	100		÷ 10	100	100* / O(1000)	O(1000)
Shaping time (ns RMS)		÷ 25	200		÷ 25	200		÷ 25	200	200* / O(5000)	O(5000)
Fake-hit rate (/ pixel / event)		~	< 10 ⁻⁸		~	< 10 ⁻⁸		≈	< 10 ⁻⁸	<10 ⁻⁷	<< 10 ⁻⁶
Power consumption (mW / cm ²)		+ 75%	6 70			20			20	20**	47 / 35***
Particle hit density (MHz / cm²)		• 20	94			1.7	6	67%	0.06	8.5	5
Non-Ionising Energy Loss (1 MeV n _{eq} / cm ²)	• 300	00 1	x 10 ¹⁶	• 10	00 2	x 10 ¹⁴	~	5.6	x 10 ¹²	3 x 10 ¹²	3 x 10 ¹²
Total Ionising Dose (Mrad)	•	1000	300		•	10 5	~		0.2	0.3	0.3
Surface (m ²)		• 2.5	0.15		÷	2 5		• 6	57	0.06	10
Material budget (% X ₀)			0.1			1			1	0.05	0.36 / 1.1 ***
* goal, not crucial, like not possible due to pow	ver bud	lget		*	* Pixe	l matrix	x		***	nnermost layers /	outer layers

1.1 – Working hypotheses: playground

- Foundry : Tower (Intel...) / TPSco
- Bending
- **Stitching** ? ≈ likely not (*e.g.* problem of foundry yield, inversely propto active surface)
- **Technological node**: 65 nm, 180 nm or... 28 nm ? \rightarrow very likely 65 nm

[65 nm] positive things

[180 nm] positive things

- + More transistors/surface unit
- + Intrinsic Radiotolerance
- + Larger wafer size (more chips)
- + Less power needed

- + More customisations allowed by foudnry (nb of metal layers, thickness of epitaxial layer, ...)
- + Cheaper (Engineering Run ! + ~price/wafer)
- + Less current leakage
- + Maturity in HEP

Time resolution: bunch tagging, *i.e. O*(100 ns)

A Large Ion Collider Experiment

ALICE 3 Vertex Detector and Outer Tracker — in numbers

	Vertex	c Det	tector	Middl	e Lay	/ers	Oute	r Tra	cker	ITS3	ITS2
Pixel size (µm²)	÷ 9	O(10) x 10)	• 2.8	O(50) x 50)	• 2.8	O(50	0 x 50)	O(20 x 20)	O(30 x 30)
Position resolution (µm)		÷ 2	2.5		• 2	2 10		•	2 10	5	5
Time resolution (ns RMS)		÷ 10	100		÷ 10	100		÷ 10	100	100* / O(1000)	O(1000)
Shaping time (ns RMS)		÷ 25	200		÷ 25	200		÷ 25	200	200* / O(5000)	O(5000)
Fake-hit rate (/ pixel / event)		~	< 10 ⁻⁸		~	< 10 ⁻⁸		~	< 10 ⁻⁸	<10 ⁻⁷	<< 10 ⁻⁶
Power consumption (mW / cm ²)	+	- 75%	6 70			20			20	20**	47 / 35***
Particle hit density (MHz / cm²)		• 20	94			1.7	6	67%	0.06	8.5	5
Non-Ionising Energy Loss (1 MeV n _{eq} / cm ²)	• 300	0 1	x 10 ¹⁶	• 10	00 2	x 10 ¹⁴	~	5.6	x 10 ¹²	3 x 10 ¹²	3 x 10 ¹²
Total Ionising Dose (Mrad)	•	1000	300		•	10 5	~		0.2	0.3	0.3
Surface (m ²)		• 2.5	0.15		÷	2 5		• 6	57	0.06	10
Material budget (% X ₀)			0.1			1			1	0.05	0.36 / 1.1 ***
* goal, not crucial, like not possible due to pov	ver bud	get		*	* Pixe	l matrix	<		***	nnermost layers /	outer layers

1.2 – Timing: time resolution, O(100 ns)

The most lilely path to reach this timing ?

1. $_3$ - Timing: time resolution, O(100 ns) + spatial resolution...

1.3 – Timing: time resolution, O(100 ns) + <u>spatial</u> resolution...

Time resolution: bunch tagging, *i.e. O*(100 ns)

A Large Ion Collider Experiment

ALICE 3 Vertex Detector and Outer Tracker — in numbers

	Verte	x Det	ector	Middl	e Lay	ers	Outer	r Trac	ker	ITS3	ITS2
Pixel size (µm²)	÷ 9	O(10) x 10)	• 2.8	O(50	x 50)	• 2.8	O(50	x 50)	O(20 x 20)	O(30 x 30)
Position resolution (µm)		÷ 2	2.5		• 2	10		• 2	2 10	5	5
Time resolution (ns RMS)		÷ 10	100		÷ 10	100		÷ 10	100	100* / O(1000)	O(1000)
Shaping time (ns RMS)		÷ 25	200		÷ 25	200		÷ 25	200	200* / O(5000)	O(5000)
Fake-hit rate (/ pixel / event)		~	< 10 ⁻⁸		~	< 10 ⁻⁸		~	< 10 ⁻⁸	<10 ⁻⁷	<< 10 ⁻⁶
Power consumption (mW / cm ²)		+ 75%	70			20			20	20**	47 / 35***
Particle hit density (MHz / cm ²)		• 20	94			1.7	6	7%	0.06	8.5	5
Non-Ionising Energy Loss (1 MeV n _{eq} / cm ²)	• 300	0 1	x 10 ¹⁶	• 10	00 2	x 10 ¹⁴	~	5.6	x 10 ¹²	3 x 10 ¹²	3 x 10 ¹²
Total Ionising Dose (Mrad)	•	1000	300		• 1	0 5	~		0.2	0.3	0.3
Surface (m ²)		• 2.5	0.15		÷	2 5		• 6	57	0.06	10
Material budget (% X₀)			0.1			1			1	0.05	0.36 / 1.1 ***
* goal, not crucial, like not possible due to pow	ver bud	lget		*	* Pixe	matrix	< C		***	nnermost layers /	outer layers

```
Antonin.MAIRE@cern.ch - IPHC Strasbourg / Pixel Wkshop 2023
```

44 / 17

CERN

1.4 – Timing: time resolution, <u>spatial</u> resolution, efficiency...

1. $_5$ - Timing: time resolution, O(100 ns) + PID...

• ...

Courtesy Felix Reidt

III.1 – Timing Vs <u>PID</u>: ...

Time resolution: bunch tagging, *i.e.* O(100 ns)

A Large Ion Collider Experiment

ALICE 3 Vertex Detector and Outer Tracker — in numbers

	Vertex	Det	ector	Middl	e Lay	ers	Oute	r Trac	ker	ITS3	ITS2
Pixel size (µm²)	÷9 (0(10	x 10)	• 2.8	O(50	x 50)	• 2.8	O(50	x 50)	O(20 x 20)	O(30 x 30)
Position resolution (µm)		÷ 2	2.5		• 2	10		• 2	2 10	5	5
Time resolution (ns RMS)	-	÷ 10	100		÷ 10	100		÷ 10	100	100* / O(1000)	O(1000)
Shaping time (ns RMS)	-	÷ 25	200		÷ 25	200		÷ 25	200	200* / O(5000)	O(5000)
Fake-hit rate (/ pixel / event)		~	< 10 ⁻⁸		~	< 10 ⁻⁸		≈	< 10 ⁻⁸	<10 ⁻⁷	<< 10 ⁻⁶
Power consumption (mW / cm ²)	+	75%	70		_	20	_		20	20**	47 / 35***
Particle hit density (MHz / cm ²)		20	94			1.7	6	67%	0.06	8.5	5
Non-Ionising Energy Loss (1 MeV n _{eq} / cm ²)	• 3000	1	x 10 ¹⁶	• 10	0 2	x 10 ¹⁴	~	5.6	x 10 ¹²	3 x 10 ¹²	3 x 10 ¹²
Total Ionising Dose (Mrad)	• 1	000	300		• 1	0 5	~		0.2	0.3	0.3
Surface (m ²)	•	2.5	0.15		÷	2 5		• 6	57	0.06	10
Material budget (% X ₀)			0.1			1			1	0.05	0.36 / 1.1 ***
* goal, not crucial, like not possible due to pow	ver budg	jet		**	* Pixel	matrix	(***	nnermost layers /	outer layers

CERN

III. 2 – Timing Vs PID: the analog signal and its challenges

Time : signal shaping / time shaping, O(200 ns)

A few figures

Antonin.MAIRE@cern.ch - IPHC Strasbourg	/ Pixe	l Wkshop	2023

III. 3 – Timing Vs PID: the analog signal and its challenges

Time : signal shaping / time shaping, O(200 ns)

A few figures

Antonin.MAIRE@cern.ch – IPHC Strasbourg / Pixel Wkshop 2023

III.4 – Timing Vs PID: the analog signal and its challenges

Time : signal shaping / time shaping, O(200 ns)

è	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
			-	-	^			,		1	_	,					
1			-)	U		1	/		L	1						
i.					~		'			•	'						
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1

III.5 – Timing Vs PID: the analog signal and its challenges

Time : signal shaping / time shaping, O(200 ns)

IV.1 – Timing Vs <u>Power</u>: ...

Anything extra, anything fancy as MAPS functionalities = a extra price in terms of power *i.e.* power consumption and/or power dissipation *i.e.* integration problem, + material budget problem

Very detailed sampling of the signal Collect fast thanks to extra depletion voltage

	Vertex	Det	ector	Middl	e Lay	ers	Outer Tracker			ITS3	ITS2	
Pixel size (μm²)	÷ 9	0(10	x 10)	• 2.8	O(50	x 50)	• 2.8	O(50) x 50)	O(20 x 20)	O(30 x 30)	
Position resolution (µm)		÷ 2	2.5		• 2	10		• 2	2 10	5	5	
Time resolution (ns RMS)	-	÷ 10	100		÷ 10	100		÷ 10	100	100* / O(1000)	O(1000)	
Shaping time (ns RMS)	-	÷ 25	200		÷ 25	200		÷ 25	200	200* / O(5000)	O(5000)	
Fake-hit rate (/ pixel / event)		~	< 10 ⁻⁸		~	< 10 ⁻⁸		~	< 10 ⁻⁸	<10 ⁻⁷	<< 10 ⁻⁶	
Power consumption (mW / cm ²)	+	75%	70			20			20	20**	47 / 35***	
Particle hit density (MHz / cm ²)		20	94			1.7	6	7%	0.06	8.5	5	
Non-Ionising Energy Loss (1 MeV n _{eq} / cm ²)	• 3000	1	x 10 ¹⁶	• 10	0 2	x 10 ¹⁴	~	5.6	x 10 ¹²	3 x 10 ¹²	3 x 10 ¹²	
Total Ionising Dose (Mrad)	• 1	000	300		• 1	0 5	~		0.2	0.3	0.3	
Surface (m ²)		2.5	0.15		÷	2 5		• 6	57	0.06	10	
Material budget (% X₀)			0.1			1			1	0.05	0.36 / 1.1 ***	
* goal, not crucial, like not possible due to pow	ver budg	get		*	* Pixe	matrix	< C		***	nnermost layers /	outer layers	

V.1 – "Industrialisation" :...

Industrialisation likely to happen at the "module" level ~ a few ALPIDE-like sensors *e.g.* ITS2 Middle/Outer layers: module = 2x7 ALPIDE sensors So industrialisation would mean :

lithographying, thinning, dicing, massive testing, placing, glueing, bonding, massive testing, ...

Clear retroactive consequences, upstream to CMOS design !

 \rightarrow Fanciness and complexity can impair large-volume production \rightarrow Needs something as *handy* as possible, as *ergonomic* as possible

e.g. . no fancy bonds on some ill-located pad...

. easy to handle without breaking it

. plug, unplug for repair ? ... flexibility

. robustness (flux of inner information, power distribution, slow control design, ...)

<u>NB</u> :

ITS3 High-risk, high gain... for a crucial ($r \ge 1.8$ cm)

but for a very little active surface at the end of the day

(ALICE2 ITS3 \approx 0.12 m²) Vs (ALICE3 OT \approx 57 m²)

53 / 17

Antonin.MAIRE@cern.ch - IPHC Strasbourg / Pixel Wkshop 2023

VI.1 – **Integration**: to keep in mind from the very beginning

Ratio of active surface to periphery surface,

to pull out "*O*[MB.s⁻¹.cm⁻²]"

to ship (even low) current/voltages over sensor distance, not even talking about ladder length

Conclusion: map of parameters

Outer Tracker in 2 keywords ?

≈ (LHC bunch-tagging) timing *Vs* power

Courtesy J. Baudot

55 / 17

D. – Template for physics cases

D.1 – Observables : Layer 1 / as a function of the collision time

D.2 – **Observables** : Layer 2 / as a function of *momentum*

<u>A.</u> low- $p_{\rm T}$ "collectivity" ($p_{\rm T} \leq 2-3 \, {\rm GeV}/c$)

≈ relativistic hydrodynamics

<u>B.</u> high- $p_{\rm T}$ "collectivity" ($p_{\rm T} \ge 6-8 \text{ GeV}/c$)

 \approx in-medium energy losses for energetic particles

Ξ.	-	-	_	-	-					_	_	-	_	-	_	
			-	-	~			,		-	-					
			L	•	x	2		/		Т		/				
			-	,	O	,	1			L	1					
			-	-	-	-	-	-	-	-	-	-	-	-	-	-

D.3 – **Observables** : Layer 3 / as a function of *y* (twice)

Antonin.MAIRE@cern.ch – IPHC Strasbourg / Pixel Wkshop 2023

D.4 – **Observables** : Layer 4 / as a function of flavours

« hadron-quark duality »

$$g + u, d, s, c, b (t) \iff \pi^{\pm} \pi^{0} K^{\pm} K^{0}_{s} \dots p \Lambda \Xi^{-} \Omega^{-} \dots$$

$$\eta(547) \omega(782) \dots K^{0}(892) \varphi(1020) \Sigma^{\pm}(1385) \Lambda(1520) \Xi^{0}(1530)$$

$$+ d t^{3} He^{4} He \dots$$

$$+^{3}_{\Lambda} H \dots$$

$$\cdot D^{0} D^{\pm} D^{\pm} D^{\pm}_{s} \dots \eta_{c} J/\psi \chi_{Ci} \psi(2S) \dots \Lambda^{\pm}_{c} \Xi^{0}_{c} \dots$$

$$\cdot B^{0} B^{\pm} B^{0}_{s} \dots Y(1S, 2S, 3S) \dots \Lambda^{0}_{b} \dots$$

$$+$$

$$(\cdot e^{\pm} \gamma)$$

$$(\cdot W^{\pm} \gamma/Z^{\circ})$$

NB :

baryons Vs mesons mixed flavours (s+c, s+b, ... c+b ...)

D.5 – **Observables** : Layer 5 / as a funct° of the collision system

Antonin.MAIRE@cern.ch - IPHC Strasbourg / Pixel Wkshop 2023

D.6 - Observables : paths through the multi-layer mesh

The multi-variate and interleaved families of QCD+QGP observables :

(HL-)LHC watchword for (≥Run III) : "precision era" pushed on many fronts

i.e. fight for ($\sigma_{\text{stat}} \approx \text{negligible}$) \otimes ($\sigma_{\text{syst}} \leq 1-5\%$) as much as possible

<u>*Note*</u> : QCD+QGP physics is both i) a bulk physics + ii) a rare-probe physics

 \rightarrow Nowadays, precision then implies extreme cases on both fronts ... (*i.e.* also for abundant observables)

(e.g. multi-differential, multi-correlated probes, ≤ 1 High-Mult. evt every $[10^6-10^9]$ MB pp evts ...)

62 / 17

Antonin.MAIRE@cern.ch – IPHC Strasbourg / Pixel Wkshop 2023