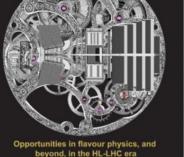

The upgrade program of LHCb

Stefano Matthias Panebianco CEA – Université Paris Saclay

An extremely biased (French/QGP oriented) view... with a lot of stolen material


Expression of Interest

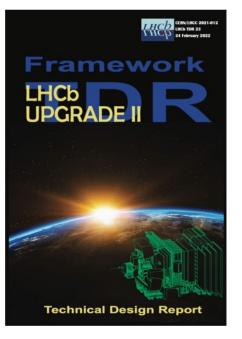
LHCC-2017-003

Physics case

LHCC-2018-027

Accelerator study

CERN-ACC-NOTE-2018-0038


2018-08-29 Ilias.Efthymiopoulos@cern.ch

LHCb Upgrades and operation at 10" cm³ s³ luminosity -A first study

G. Arduini, V. Baglin, H. Burblardt, F. Cerutti, S. Claudet, B. Di Girolamo, R. De Maria, I. Efthymiopoulos, L.S. Esposito, N. Karastathis, R. Lindner, L.E. Medina Medrano, Y. Papaphilippou, C.Parkes, D. Pellegrini, S. Redaelli, S. Roesler, F. Sanchez-Galan, P. Schwarz, E. Thomas, A. Tsinganis, D. Wollmann, G. Wilkinson CERN, Geneva, Switzerland

Keywords: LHC, HL-LHC, HiLumi LHC, LHCb, https://indico.cern.ch/event/400665

LHCC-2021-012

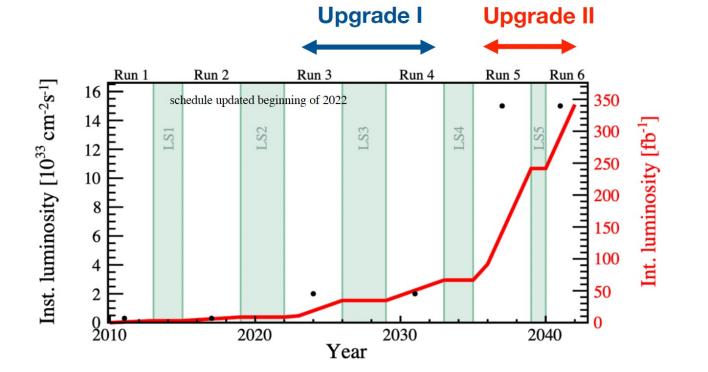
CERN Research Board September 2019

"The recommendation to prepare a framework TDR for the LHCb Upgrade-II was endorsed, noting that LHCb is expected to run throughout the HL-LHC era."

CERN

<u>European Strategy Update 2020</u> "The full potential of the LHC and the HL-LHC, including the study of flavour physics, should be exploited"

Approved March 2022 R&D programme, scoping document to be prepared followed by sub-system TDRs Physics programme limited by detector, NOT by LHC

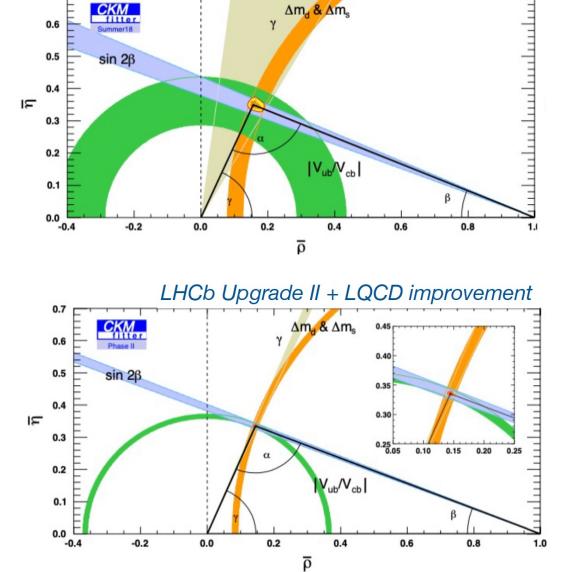

• Hence, clear case for an ambitious plan of upgrades

Upgrade II

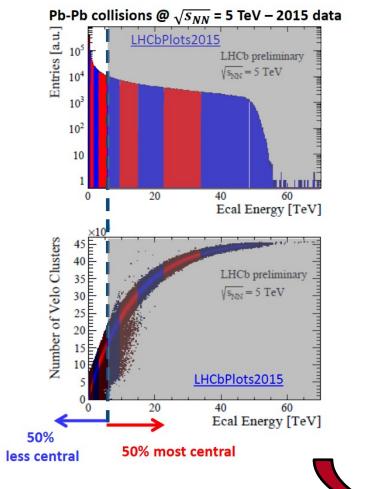
 $\cdot L_{peak} = 1.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

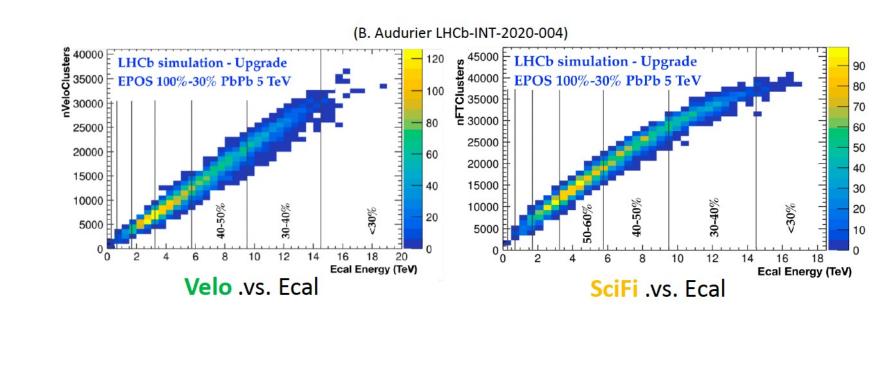
INTRODUCTION

- Lint = ~300 fb⁻¹ during Run 5 & 6, Install in LS4 (2033)
- Some smaller detector consolidation and enhancements in LS3 (2026)

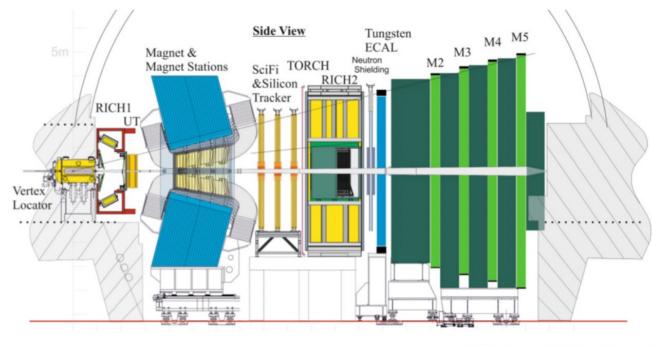

· Potentially the only general purpose flavour physics facility in world on this timescale

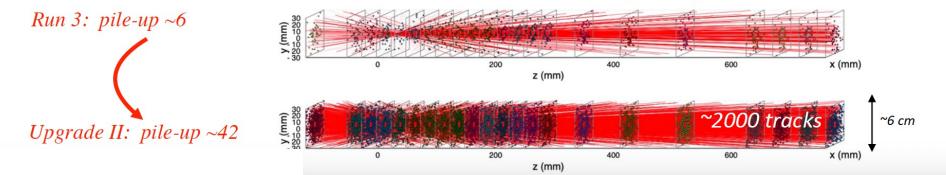
LHCb only, end of	2018
-------------------	------


Observable	Current LHCb	Upgr	ade I	Upgrade II
	$({ m up \ to \ 9 \ fb^{-1}})$	$(23{ m fb}^{-1})$	$(50{ m fb}^{-1})$	$(300{ m fb}^{-1})$
CKM tests				
$\gamma~(B ightarrow DK,~etc.)$	4° 9,10	1.5°	1°	0.35°
$\phi_s \; \left(B^0_s ightarrow J\!/\!\psi \phi ight)$	$32\mathrm{mrad}$ 8	$14\mathrm{mrad}$	$10\mathrm{mrad}$	$4\mathrm{mrad}$
$ V_{ub} / V_{cb} \ (A_b^0 \to p\mu^-\overline{\nu}_\mu, \ etc.)$	6% [29, 30]	3%	2%	1%
$a^d_{ m sl}~(B^0 o D^- \mu^+ u_\mu)$	$36 imes 10^{-4}$ 34	$8 imes 10^{-4}$	$5 imes 10^{-4}$	$2 imes 10^{-4}$
$a^s_{ m sl}~(B^0_s o D^s \mu^+ u_\mu)$	33×10^{-4} 35	10×10^{-4}	$7 imes 10^{-4}$	3×10^{-4}
Charm				
$\Delta A_{CP} \ (D^0 \to K^+ K^-, \pi^+ \pi^-)$	29×10^{-5} 5	13×10^{-5}	8×10^{-5}	$3.3 imes 10^{-5}$
$A_{\Gamma} \left(D^0 \to K^+ K^-, \pi^+ \pi^- \right)$	11×10^{-5} 38	5×10^{-5}	3.2×10^{-5}	1.2×10^{-5}
$\Delta x \left(D^0 ightarrow K_{ m s}^0 \pi^+ \pi^- ight)$	18×10^{-5} 37	$6.3 imes 10^{-5}$	4.1×10^{-5}	$1.6 imes 10^{-5}$
Rare Decays				
$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	(-) 69% 40,41	41%	27%	11%
$S_{\mu\mu}~(B^0_s ightarrow\mu^+\mu^-)$		· · · · ·		0.2
$A_{ m T}^{(2)}~(B^0 o K^{*0} e^+ e^-)$	0.10 [52]	0.060	0.043	0.016
$A_{\mathrm{T}}^{\mathrm{Im}}~(B^0 ightarrow K^{st 0} e^+ e^-)$	0.10 52	0.060	0.043	0.016
${\cal A}_{\phi\gamma}^{ar{\Delta}\Gamma}(B^0_s o \phi\gamma)$	$^{+0.41}_{-0.44}$ 51	0.124	0.083	0.033
$S_{\phi\gamma}(B^0_s o \phi\gamma)$	0.32 51	0.093	0.062	0.025
$\alpha_{\gamma}(\Lambda_b^0 \to \Lambda \gamma)$	$^{+0.17}_{-0.29}$ 53	0.148	0.097	0.038
Lepton Universality Tests				
$R_K (B^+ \to K^+ \ell^+ \ell^-)$	0.044 [12]	0.025	0.017	0.007
$R_{K^*} \ (B^0 \to K^{*0} \ell^+ \ell^-)$	0.12 61	0.034	0.022	0.009
$R(D^*)~(B^0 ightarrow D^{*-}\ell^+ u_\ell)$	0.026 62.64	0.007	0.005	0.002

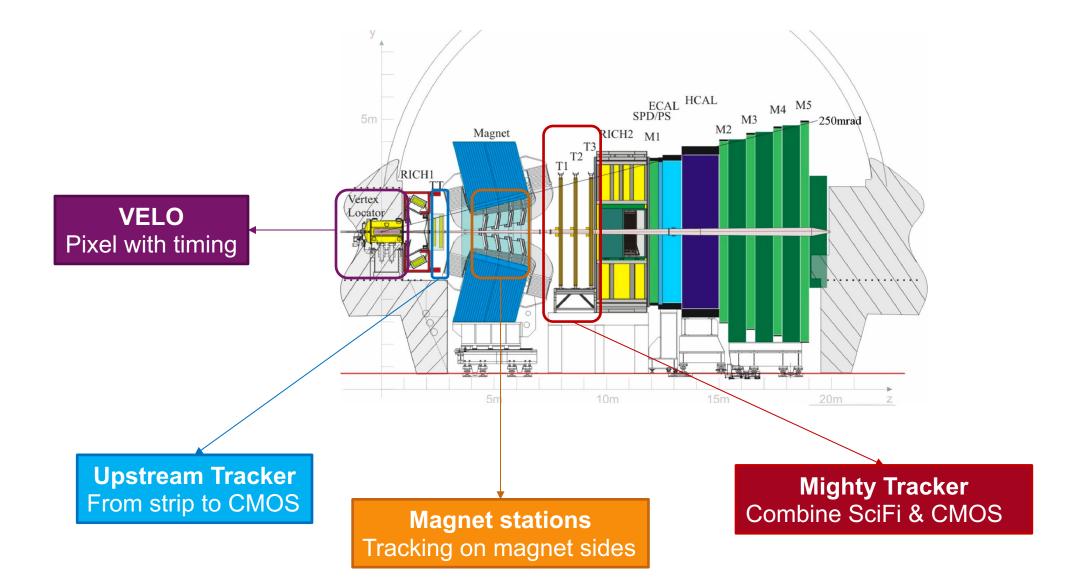

Framework TDR, LHCb-TDR-023

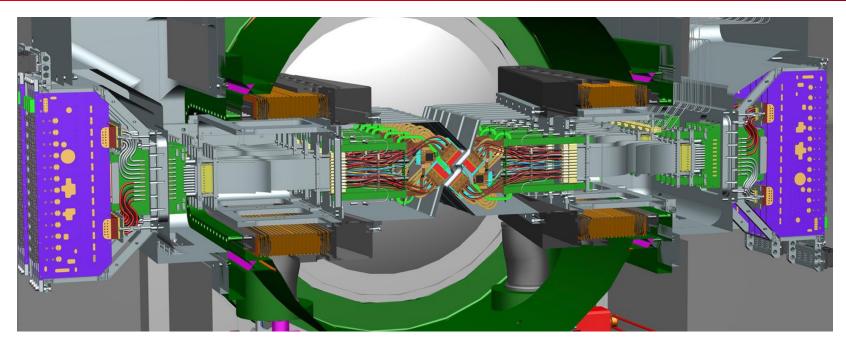
0.7

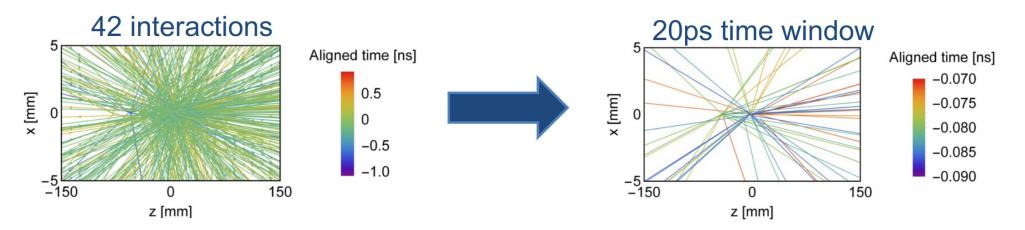

LHCD INTRODUCTION


Targeting same performance as in Run 3, but with pile-up ~40!

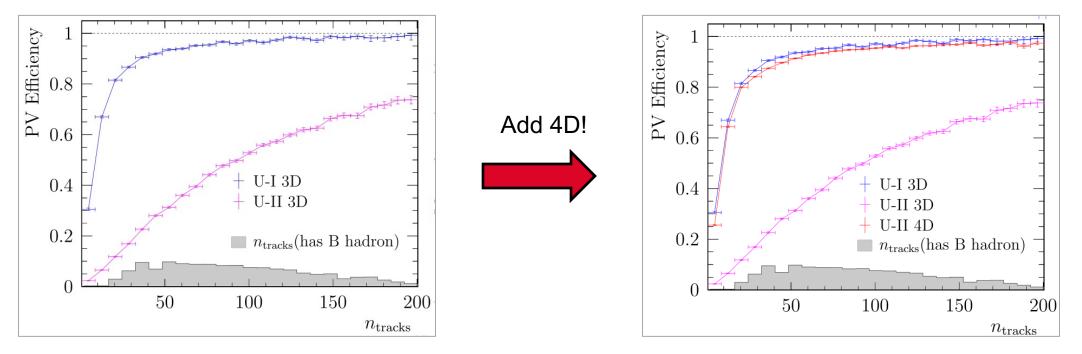
Same spectrometer footprint, innovative technology for detector and data processing Key ingredients: • granularity

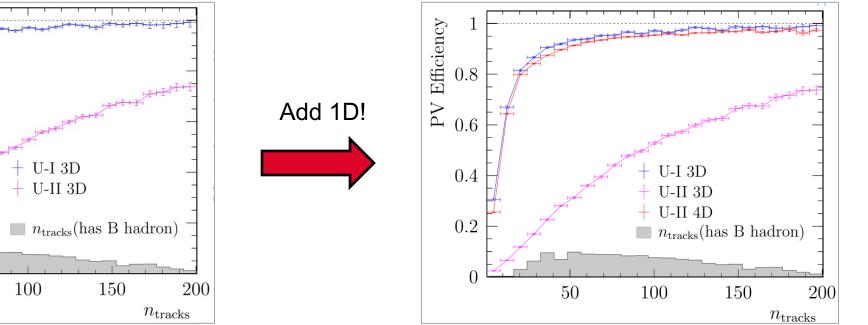

- fast timing (few tens of ps)
- radiation hardness

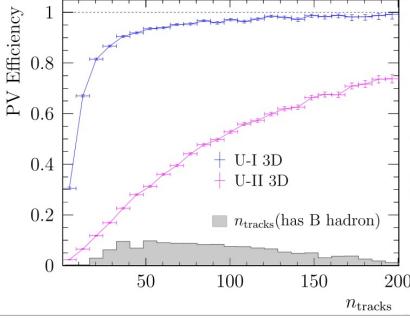


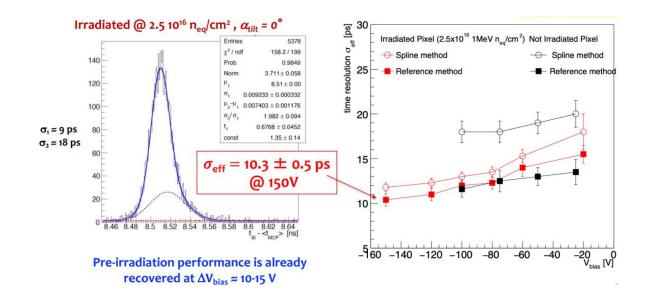

THE TRACKING SYSTEM UPGRADE

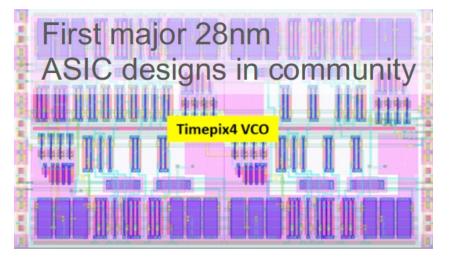
LHCb

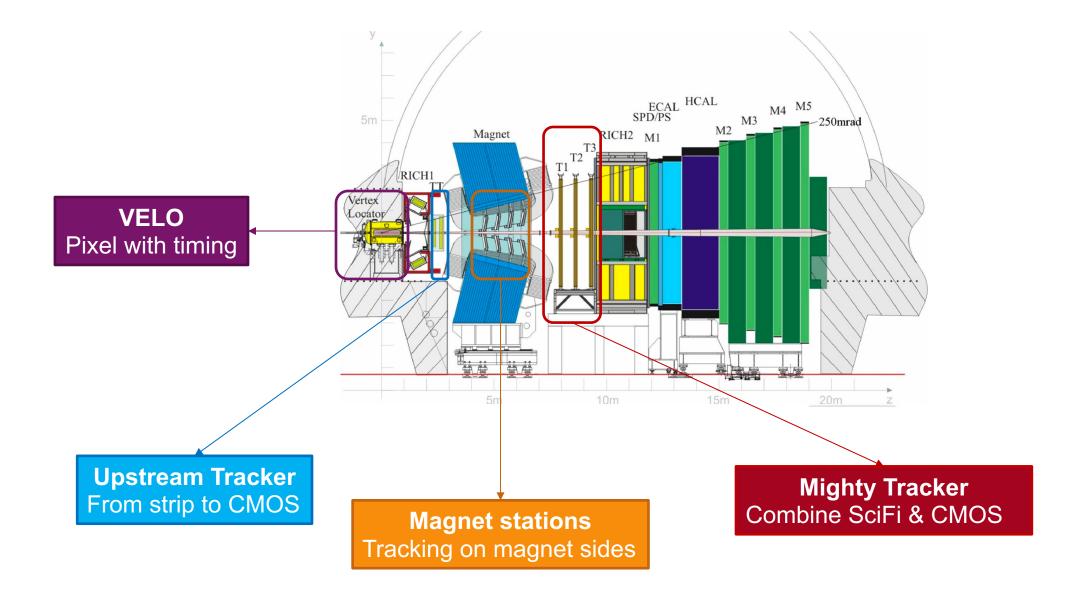


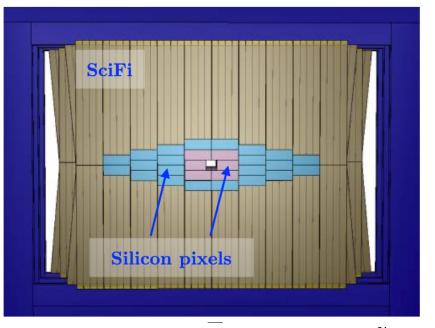




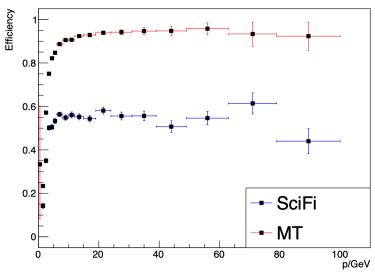


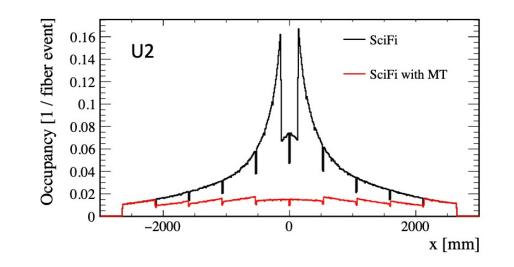


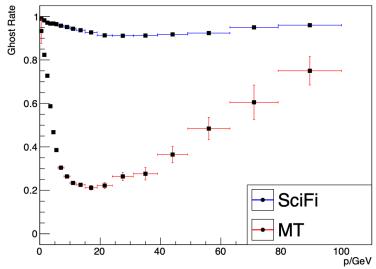




THE TRACKING SYSTEM UPGRADE

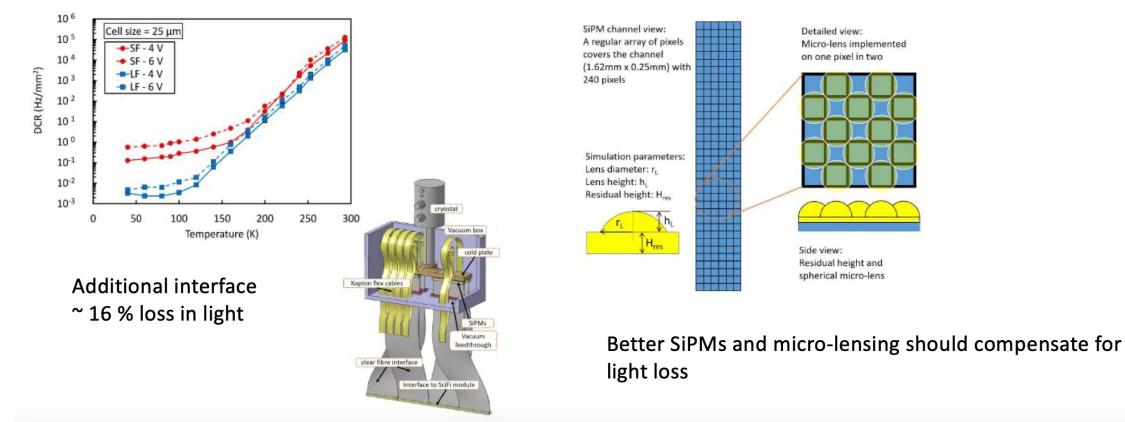

LHCb

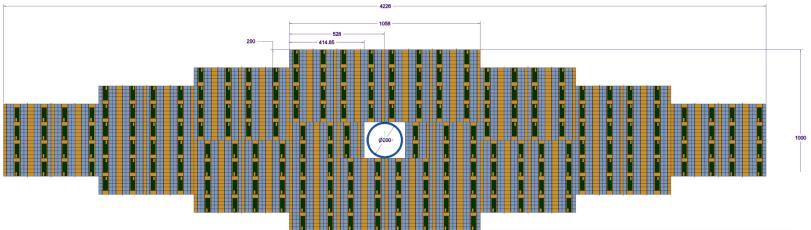




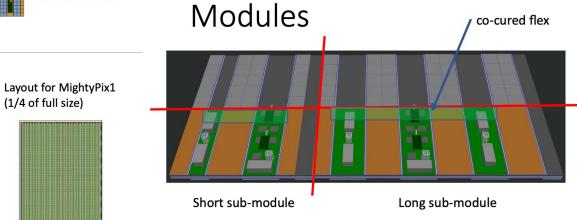
Efficiency for HLT2 L = 1.5×10^{34} , long tracks, p

Efficiency for HLT2 L = 1.5×10^{34} , long tracks, p




SciFi Enhancements

Major improvement seen cryogenic cooling to allow to run below -120 °C


- Essential to maintain reasonable noise rate for SiPMs after irradiation
- Should allow to reduce the cluster thresholds while keeping acceptable dark count rate

One Layer 3m² 2 Layers per station 6 Layers in total

- One layer consists of 4 sub-modules
- 28 modules per layer (2 short)
- One sub-module is a electrical unit
- Build chip-modules to save space
- Co-cured service flex for power/signal distribution

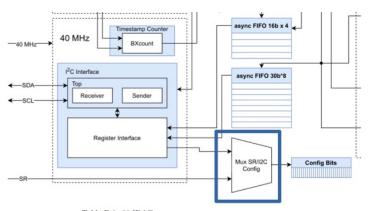
HV-CMOS

- One of the main drivers of the project is the size of the silicon area
- MAPS chips are limited to ~2x2 cm² (foundry)
- The most critical points are:
 - In Time Efficiency
 - **Power** Consumption
 - Radiation Tolerance

Pixel size	< 100 μm x 300 μm			
In-time efficiency	> 99% within 25 ns window			
Timing resolution	~ 3 ns within 25 ns window			
Radiation tolerance	6 x 10 ¹⁴ 1 MeV n _{eq} /cm ²			
Power consumption	< 150 mW/cm ²			
Data transmission	4 links of 1.28 Gb/s each			
Compatibility with the LHCb readout system				

LHCb-INT-2019-007, 2019

(1/4 of full size)

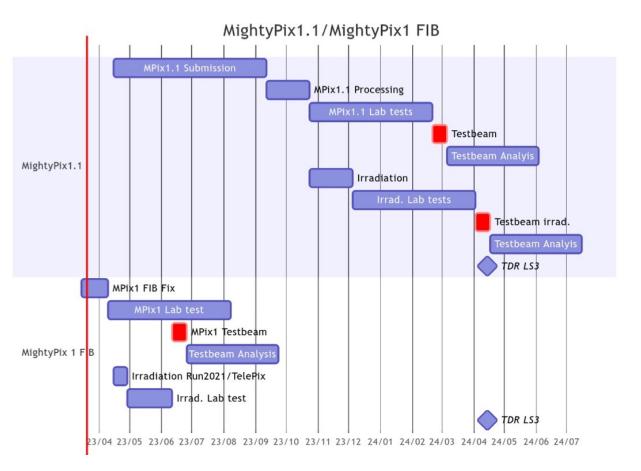


Problems with MightyPix1

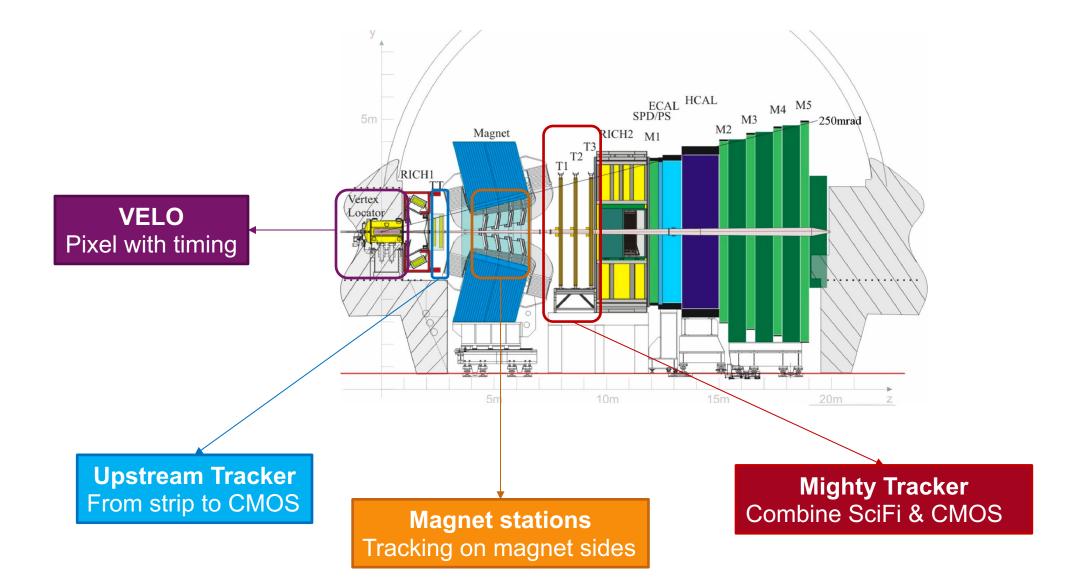
- •There was a mistake in the MP1 design
- •New I2C interface and the well tested shift register interfered
- •One load signal not connected (Bias block)
- •Sadly the simulation tested after config block

•An error message was overlooked

•Things happen. We will now concentrate on what to do!



DAC	36 ID Bits	Default
Q0	1:0	0
Qon	3:0	4'b0101
BLRes	5:0	6'd5
VNCompFine	5:0	6'd1
VN	5:0	6'd20
VNFB	5:0	6'd5
VNRegC	5:0	6'd1
VNDel	5:0	6'd10
VPBigFine	5:0	6'd20
VPDAC	5:0	0
VN	5:0	0
VNFoll2	5:0	6'd20
VNFB2	5:0	0
VPLoad2	5:0	0
VPVCO	5:0	6'd7
VNVCO	5:0	6'd15
VPDelDclMux	5:0	6'd30
VNDelDclMux	5:0	6'd30
VPDelDcl	5:0	6'd30
VNDelDcl	5:0	6'd30
VPDelPreEmp	5:0	6'd30
VNDelPreEmp	5:0	6'd30
VPDcl	5:0	6'd30
VNDcl	5:0	6'd30
VNLVDS	5:0	6'd10
VNLVDSDel	5:0	6'd10
VPPump	5:0	6'd5
VNCPc	5:0	6'd5
VNVCOc	5:0	6'd10
VPRegCasc	5:0	0
VPSmallFine	5:0	6'd20
VNComp	5:0	6'd30
VPFoll	5:0	6'd30
VPBiasRec	5:0	6'd5
VNBiasRec	5:0	6'd5

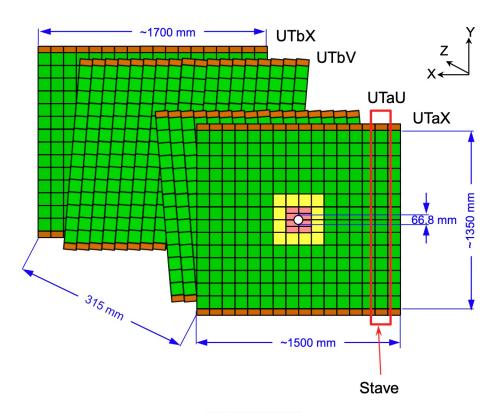

Resubmission

- KIT offered to resubmit a fixed MightyPix1.1
- Consider using repaired sensors (Focused Ion Beam FIB)
- Maybe wafer scale or more FIB is possible

THE TRACKING SYSTEM UPGRADE

LHCb

- Project in very early stage
- Proto-collaboration including labs from China and France


- R&D is only starting and the main technological choices are still open
- Could certainly benefit from synergy with the Mighty Tracker project
- Next major milestones:
 - Scoping document: September 2024
 - TDR: end of 2025

From the present UT...

• The UT detector in phase-I upgrade (P1UG) consists of 4 planes of silicon strips. The design was optimized for a peak luminosity of L=2×10³³ cm⁻²s⁻¹ (max occupancy of 1.4%) and can handle a data rate of ×1.5 higher

Sensor	A	B	С	D
Туре	p-in-n	n-in-p	n-in-p	n-in-p
Thickness(µm)	320	250	250	250
Pitch (μm)	187.5	93.5	93.5	93.5
Length (mm)	~100	~100	~50	~50
Strips/sensor	512	1024	1024	1024
SALTs/sensor	4	8	8	8
Numbers	888	48	16	16

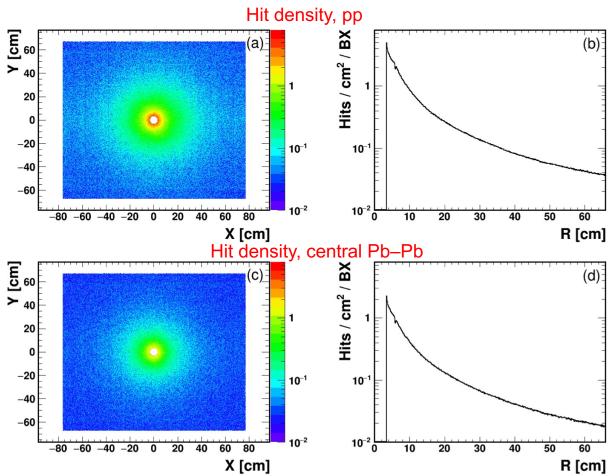
LHCD UT

From the present UT...

The UT detector in phase-I upgrade (P1UG) consists of 4 planes of silicon strips. The design
was optimized for a peak luminosity of L=2×10³³ cm⁻²s⁻¹ (max occupancy of 1.4%) and can
handle a data rate of ×1.5 higher

... to a high luminosity concept

pp collisions


Instantaneous luminosity 2 × 10³⁴ cm⁻²s⁻¹
 67% of BX have beam-beam collisions
 O(10) tracks per pp collision

Average hit rate in UT: 5.9 hits/cm²/BX_{coll} Pb-Pb collisions

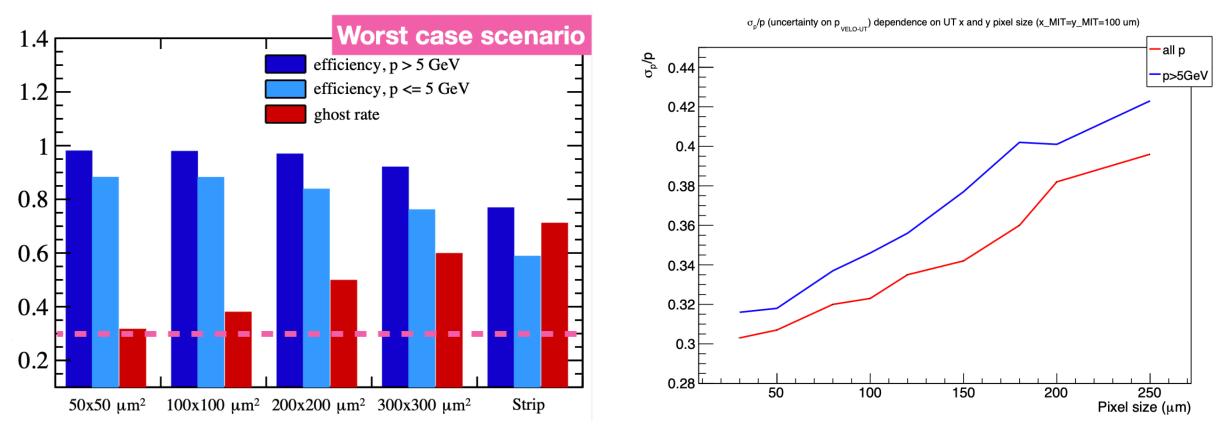
 Instantaneous luminosity up to 10²⁸ cm⁻²s⁻¹ Pile-up: negligible
 O(1000) tracks per central Pb–Pb collision
 Average hit rate in UT: 2.9 hits/cm²/BX_{coll}
 Maximum hit rate in UT: 52.5 hits/cm²

Lighter ion collisions

Allow larger integrated luminosity
 Still no significant pile-up (except O-O)
 Smaller track density than Pb-Pb

20

Preliminary specifications


- Concept presented within the F-TDR: well received by the LHCC
- First tentative list of specifications
- To be further consolidated and detailed: work in progress

Specification
160 MHz / cm ² pp (~52.5 hits / cm ² / BX for Pb/Pb)
O(1 ns) for BX tagging
O(30×30 µm ²)
O(100-300 mW/cm ²)
3×10^{15} 1-MeV n _{eq} /cm ² , 240 Mrad

Close to ATLAS CMOS outer layer specifications

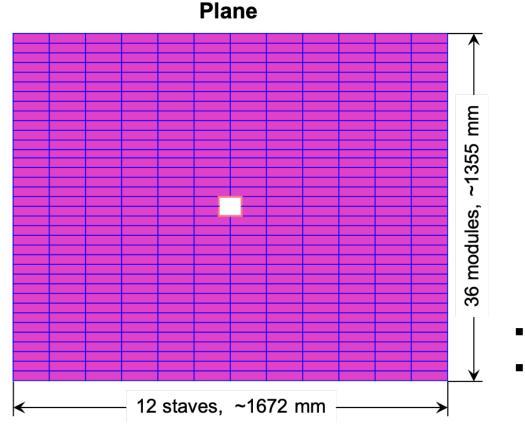
- Pixel size
 - Occupancy
 - Space (\rightarrow momentum) resolution
 - Tracking performances (ghost rate)

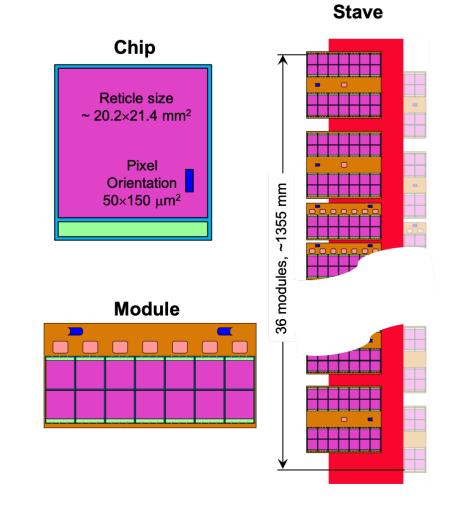
https://indico.cern.ch/event/1285479/contributions/5417480/attachments/2651634/4591280/2023-05-23_Migthy-UT_CMOS.pdf

MightyPix (AMS180nm)

Most advanced sensor : almost full functionality prototype Designed specifically for LHCb (readout) With the present demonstrated specs: not fully suitable for UT (readout rate, radiation dose) Interest in China to participate to the qualification and tests

MALTA family (TJ180nm)


Pixel size : $36.4 \times 33 \ \mu\text{m}^2$ 98% "in-time" tagged data from test-beam without ToT (= less data to be sent - tbd) Proven 3×10^{15} 1-MeV n_{eq}/cm², 100 Mrad @ -20°C Malta 2 (2021): enlarged transistors for lower noise and higher gain Malta 3 (ongoing design): on-chip time tagging, serial output, daisy chain readout Strong interest from developers to include UT specifications Irfu participated to the chip qualification, LLR is joining the effort

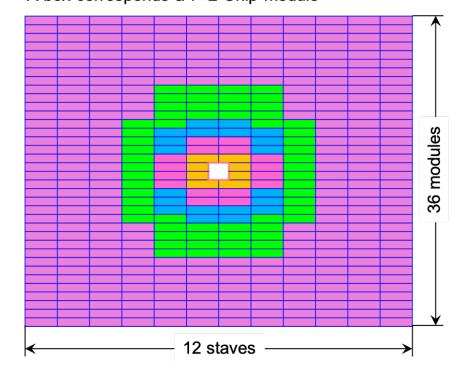

DPTS (TJ65nm)

Large development group at CERN involved for ALICE ITS3 Proven working after 1×10^{15} 1-MeV n_{eq}/cm^2 @ room temperature Test vehicle for digital asynchronous readout Working point ~ 99% efficiency at acceptable fake-hit rate Strong interest from Irfu (and IPHC) to submit in ER2 (mid 2024)

- Pixel size
- Chip size, detector position, number of planes
 - Dead areas (keep below 1%) \rightarrow efficiency
 - Tracking performances
 - Data rate (also depending on the readout scheme)

- Similar layout for small pixel or large pixel CMOS solutions
- The UT system consists of 4 (or 3) planes

- Pixel size
- Chip size, detector position, number of planes
 - Dead areas (keep below 1%) \rightarrow efficiency
 - Tracking performances
 - Data rate (also depending on the readout scheme)


Det	Pixel size	Bits per hit	Chip area	Data rate of the hottest chip
1	30 µm x 30 µm	31	4,72 cm ²	15,3 Gbit/s
2	50 µm x 150 µm	29	4,23 cm ²	10,8 Gbit/s
3	50 µm x 300 µm	29	19,66 cm ²	27,2 Gbit/s

Data rate [Gbit/s] of the hottest chip for different configuration of detectors

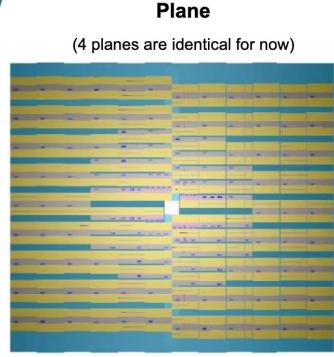
		Pixel siz	e (30 µm :	x 30 µm)				Pixel size	e (50 µm >	x 150 μm)				Pixel siz	e (50 μm :	x 300 µm)				12
1024 -	1.18 cm² 4.64		3.72 cm² 12.1	4.72 cm² 15.97	9.44 cm² 21.04	1024 -	9.83 cm² 22.46	19.66 cm² 42.05	^{31.03} cm ² 69.22	² 39.32 cm ² 86.7	78.64 cm² 150.84	1024	19.66 cm ² 27.33	² 39.32 cm [:] 53.71	² 62.05 cm [:] 87.02	² 78.64 cm 110.61	² 157.29 cm [:] 202.09	2		10
512 -	0.59 cm² 2.46	1.18 cm² 5.3	1.86 cm² 7.33	2.36 cm² 7.97	Det 1 4.72 cm ² 15.33	512 -	4.92 cm ² 11.38	9.83 cm² 21.3	15.51 cm² 35.59	² 19.66 cm ² 29.52	39.32 cm ² 48.31	512	9.83 cm² 21.68	19.66 cm ³ 40.65	² 31.03 cm ² 66.91	² 39.32 cm ³ 83.9	² 78.64 cm ² 146.12		-	8
Lines of pixel in chip 522 -	0.29 cm² 1.51	0.59 cm² 2.64	0.93 cm² 3.76	1.18 cm² 4.04	2.36 cm² 7.44	Lines of pixel in chip	2.46 cm² 7.43	4.92 cm² 14.2	7.76 cm² 22.8	9.83 cm² 24.78	19.66 cm² 28.51	Lines of pixel in chip 529	4.92 cm ² 10.97	9.83 cm² 20.56	15.51 cm [:] 34.36	² 19.66 cm 28.54	² 39.32 cm ² 46.75		ŀ	6
143 -	0.16 cm² 0.96	0.33 cm² 1.64	0.52 cm² 2.25	0.66 cm² 2.55	1.32 cm² 4.55	143 -	1.37 cm² 4.28	2.75 cm² 8.12	Det2 4.33 cm ² 10.84	5.49 cm ² 16.08	10.98 cm² 28.49	143	2.75 cm ² 7.95	5.49 cm² 14.9	8.67 cm² 24.15	10.98 cm ³ 19.26	² 21.96 cm ² 30.21		r	4
128 -	0.15 cm² 0.96	0.29 cm² 1.43	0.47 cm² 2.25	0.59 cm² 2.28	1.18 cm² 4.27	128 -	1.23 cm² 4.24	2.46 cm² 7.04	3.88 cm² 11.23	4.92 cm ² 10.12	9.83 cm² 18.93	128	2.46 cm ² 7.16	4.92 cm² 13.69	7.76 cm² 21.99	9.83 cm² 17.47	Det 3 19.66 cm ² 27.28		-	2
l	128	256 Col	404 ons of pixel in	512 chip	1024		128	256 Co	404 lons of pixel in	512 chip	1024		128	256 Co	404 Hons of pixel in	512 chip	1024	4 l		0

- Pixel size
- Chip size, detector position, number of planes
 - Dead areas (keep below 1%) \rightarrow efficiency
 - Tracking performances
 - Data rate (also depending on the readout scheme) A box corresponds a 7×2-Chip module

1888 lpGBTs (data) 1312 lpGBTs (control) 1312 VTRx+ 4512 Optical fibers

Ring	5	4	3	2	1	All
e-links / chip	1	1	1	1-3	2-7	
Gbps / e-link	0.32	0.64	1.28	1.28	1.28	
lpGBT / module	0.5	1	2	7	14/10	
Num of modules	1312	240	80	64	32	1728
Num of data lpGBTs	656	240	160	448	384	1888
Num of ctrl lpGBTs	656	240	80	192	144	1312
Num of ctrl lpGBTs	656	240	80	192	144	131

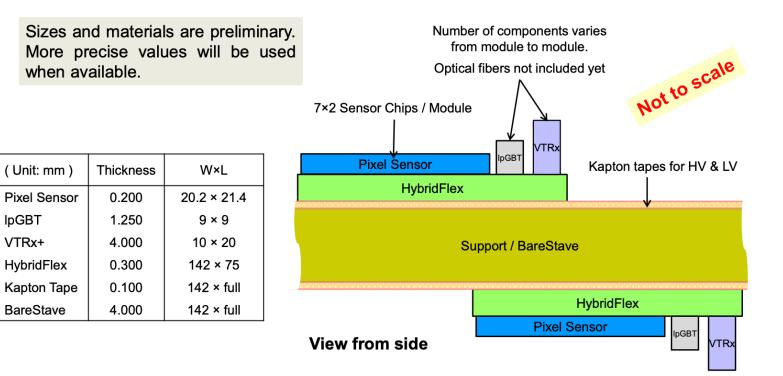
The configuration will be further optimized with sensor chip development and better simulation studies. Dual-module (for lpGBT efficiency)


- **Pixel size**
- Chip size, detector position, number of planes
- Chip thickness and global material budget
 - Position (\rightarrow momentum) resolution, multiple scattering

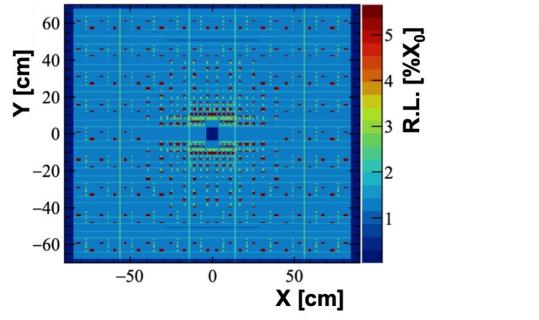
https://indico.icc.ub.edu/event/163/contributions/1626/attachments/663/1321/LHCbU2 WS2023 UT.pdf

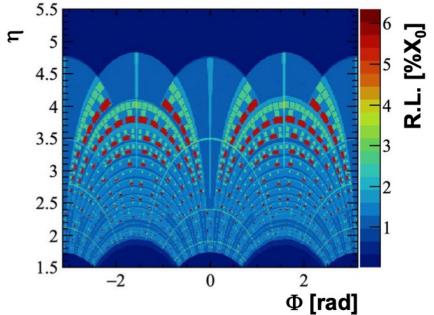
- Detector description has been developed for the large * electrode solution. It can be modified easily for the small electrode solution.
- It was initially created based on DDDB. The DD4HEP * version now has been well debugged.

Extremely crowded for the inner modules

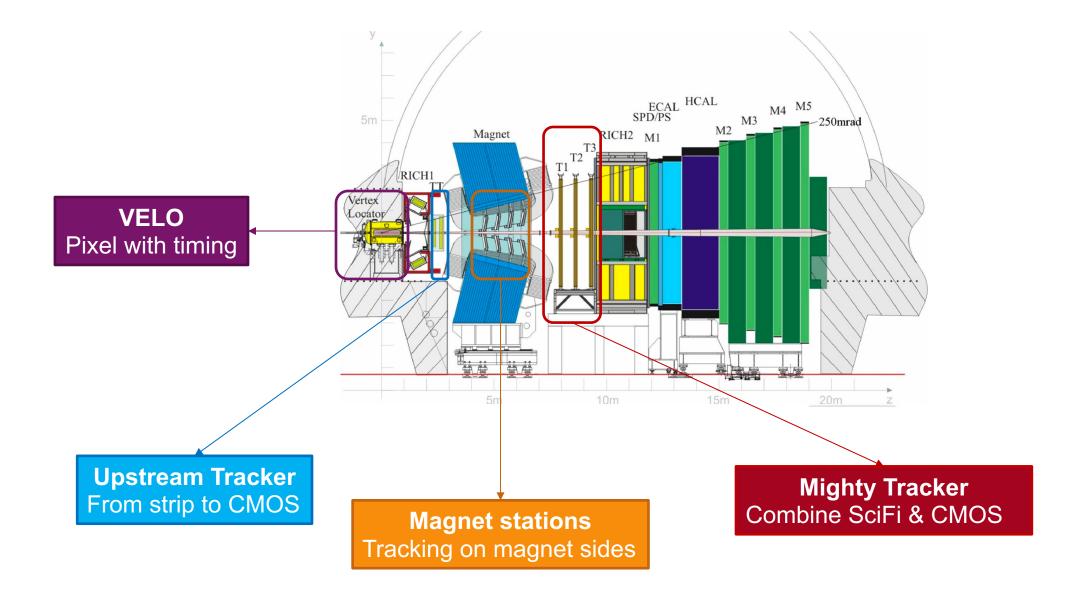


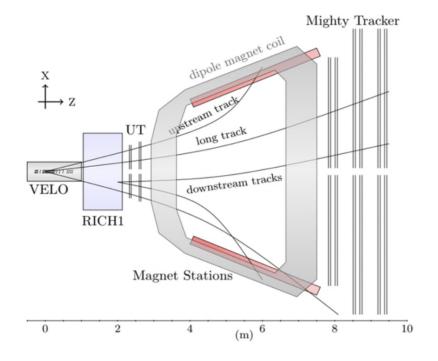
- Pixel size
- Chip size, detector position, number of planes
- Chip thickness and global material budget
 - Position (\rightarrow momentum) resolution, multiple scattering

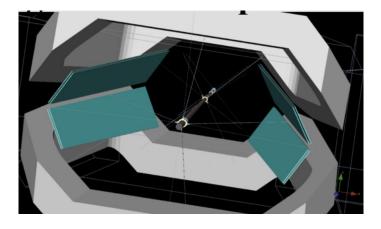

https://indico.icc.ub.edu/event/163/contributions/1626/attachments/663/1321/LHCbU2_WS2023_UT.pdf

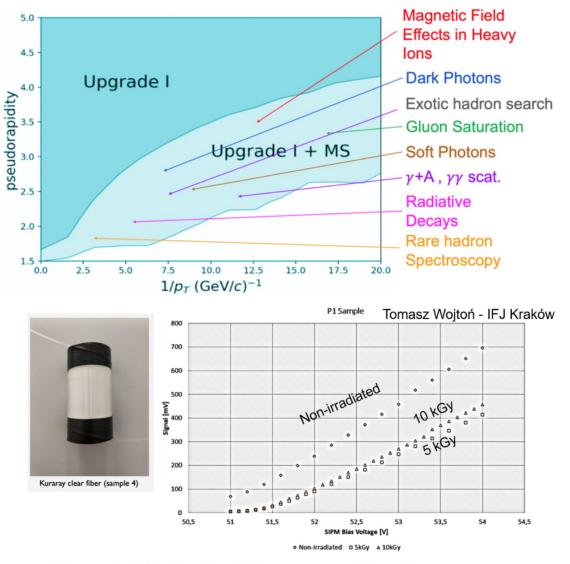


- Pixel size
- Chip size, detector position, number of planes
- Chip thickness and global material budget
 - Position (\rightarrow momentum) resolution, multiple scattering


https://indico.icc.ub.edu/event/163/contributions/1626/attachments/663/1321/LHCbU2_WS2023_UT.pdf

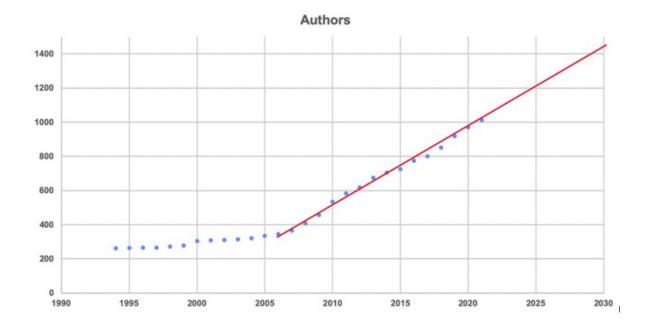



THE TRACKING SYSTEM UPGRADE


LHCb

- 40% drop in light yield after 10 kGy on covered fibers (P1 sample)
- Expect < 2kGy radiation after 50 fb⁻¹ on the clear fibers running on top an bottom of the magnet.
- · Panel and fiber ribbon replacement is an option for Run5.

Approved March 2022


- Detector design and technology options
- R&D program and schedule
- Cost for baseline, options for descoping
- National interests

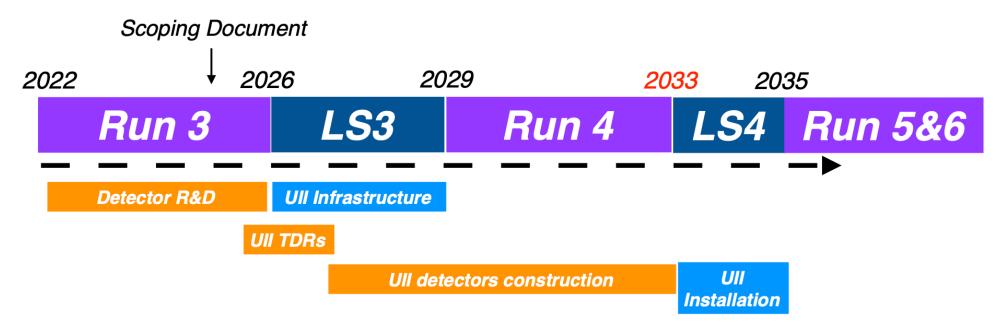
Detector	Baseline
	(kCHF)
VELO	14800
UT	8900
Magnet Stations	2300
MT-SciFi	22400
MT-CMOS	19500
RICH	15600
TORCH	9900
ECAL	34800
Muon	7100
RTA	17400
Online	8900
Infrastructure	13500
Total	175100

Detector	Countries involved
VELO	BR, CERN, ES, FR, IT, NL, PL, RU, SE, UK
UT	CN, FR
Magnet Stations	PL, US
Mighty Tracker (SciFi + MAPS)	BR, CH, DE, ES, SE, UK
RICH	CERN, IT, PL, RO, SI, UK
TORCH	CERN, UK, SI
ECAL	AU, CERN, CN, ES, FR, HU, IT, RU, US
Muon	IT, RU
RTA	BR, CERN, CN, DE, ES, FR, IT, NL, PL, RU, UK, US
Online	CERN, FR

LOW ~120 MCHF	MEDIUM ~150 MCHF	FTDR ~175 MCHF
conservative	optimistic, but not completely unrealistic	clearly above what can be achieved by present collaboration
all FTDR descopes	some FTDR descopes	full FTDR option

Next step: SCOPING DOCUMENT

Estimated cost scenarios (baseline and descoped) with analysis of physics performances, person-power and funding profiles, project organisation and milestones, list of TDRs and project schedule


LHCC: "Some elements of this have been fulfilled by LHCb with FTDR"

Need to complement with more detailed plans on the descoping option, and with a matrix of participations (person-power and funds) discussed with the funding agencies

This is needed before proceeding with sub-detector TDRs

<u>Target is to produce the</u> <u>Scoping Document within 2024</u>

Constraints on Upgrade II plans

- All detector components fully ready at beginning of LS4, in 2033
- LS4 duration of 2 years will be fully needed for Upgrade II installation
 - \rightarrow Start detector element construction during LS3
 - \rightarrow Anticipate some LHCb detector infrastructure work to LS3

5D Calorimetry: Precision timing

- Goal: achieve energy resolution and reconstruction eff. ~ to Run1&2
 - pile-up, radiation up to 1MGy
- Requires: granularity, precision timing
- Different technologies in different regions
- Crystal fibres R&D for highest fluence regions

 $E_{\rm T} > 2.5 \, {\rm GeV}$

6000

— w/o time cut

 $\Delta t/\sigma t$ (comb) < 3

 $M(K^+\pi^-\gamma)$ [MeV/c²]

7000

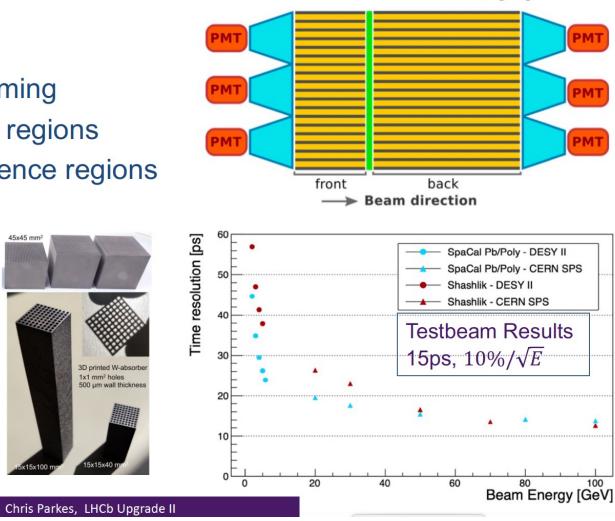
Extensive R&D

Upgrade II

5000

nEntries

500


400

300

200

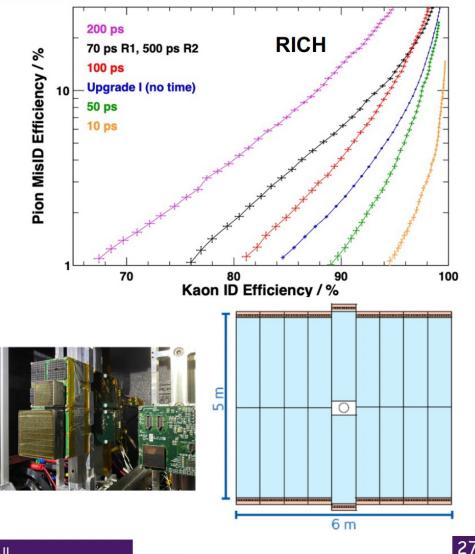
100

4000

scintillator

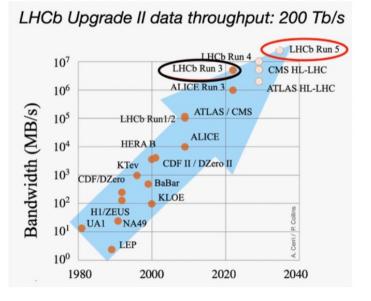
absorber

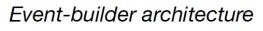
mirror

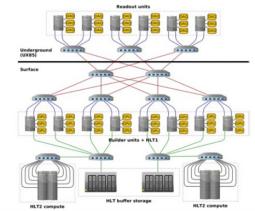

light guide

26

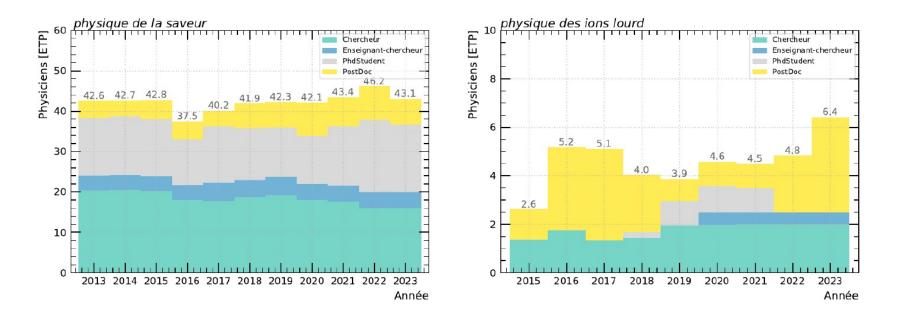
Particle ID: π/K/p – RICH & TORCH with Timing


- Hadron particle identification key to LHCb unique physics capabilities
- RICH 1 & 2 geometry maintained
- Time of flight TORCH system
 - Cover wide momentum range
- In both systems precision timing is crucial for Upgrade II performance
- RICH: Time-stamping each photon with a resolution of few tens of ps
- TORCH: 10-15 ps time resolution per track
- Synergy on electronics readout





Online & Offline


- Novel trigger system for Upgrade I
 - Fully software trigger
 - HLT1 based on GPUs
- Similar concept planned for Upgrade II
- But at 200Tb/s!
 - Further exploitation of hybrid architectures:
 CPU, GPU, FPGA...
- Offline computing requirements are significant
 - Upgrade I model not sustainable
 - LHCb Upgrade II in Run 5 issues similar to ATLAS & CMS Phase II of Run 4
 - Coordination with WLCG and the HEP Software Foundation on mitigation

38

29

The population of physicists is relatively stable over 10 years:

The LHCb Upgrade II project attracts newcomers from the ALICE collaboration:

- SUBATECH, 4 physicists with expertise in the ALICE / MFT detector
- LPC, 3 physicists have expressed their interest in joining LHCb by LS3
- IRFU, 3 physicists with expertise in the ALICE / MFT detector. Interested by the R&D of LV CMOS sensors for UT Upgrade II