The Higgs boson: standard model like or not?

Andrey Korytov (UF)

François Englert and Peter Higgs

Why study the Higgs boson?

SM without Higgs boson

Matter: fermions

- 3 generations
- each generation comprises a doublet of leptons and a doublet of quarks

Forces, carried by vector bosons, arise from requiring local gauge symmetries

B and **W**⁰ are then mixed to give **photon** and **Z**

- SU(1): single field **B**
- SU(2): triplet of fields W⁺ W⁰ W⁻
- SU(3): octet of gluons

SU(2) – troublemaker (twice!)

- forces introduced via gauge symmetry are <u>renormalizable</u>; however, the gauge symmetry implies that the corresponding force carriers are massless. <u>But</u> W and Z bosons are massive
- weak force violates parity: with the gauge symmetry, this requires fermions to be massless.
 But fermions are massive

Brout + Engler; Higgs (1964):

(1) introduce a **doublet of pseudoscalars**, Φ :

(four degrees of freedom, so to speak)

$$\Phi = \begin{pmatrix} \varphi_1 + i\varphi_2 \\ \varphi_3 + i\varphi_4 \end{pmatrix}$$

(2) give the doublet a **potential in a very unusual form**:

 $V(\Phi) = -\frac{1}{2}\mu^2 |\Phi|^2 + \frac{1}{4}\lambda |\Phi|^4$

(minimum energy is not when there is no field)

(3) require the doublet to be SU(2) invariant

(just as for fermion doublets)

- this makes new scalars interact with SU(2) fields: $g^2 |\Phi|^2 W^2$

Weinberg (1967):

(4) require Φ to be a force for fermions (ψ_i) with non-universal ad hoc couplings λ_i : $\lambda_i \psi_i \Phi \overline{\psi}_i$

(direct analogy to Yukawa's theory in which a scalar field was responsible for a strong force between nucleons)

Hocus pocus

The minimum of energy is when field is non-zero: vacuum expectation value (vev) is $v = \frac{\mu}{\sqrt{\lambda}}$ Hence, consider field fluctuations around its vacuum state: $\Phi(x) = v + h(x)$

Re-write everything for the expanded field near V_{min} and observe the magic!

• Terms with SU(2) gauge bosons: $g^2 |\Phi|^2 W^2 \rightarrow (g^2 v^2) W^2 + (2g^2 v) h W^2 + (g^2) h^2 W^2$

The Higgs boson conundrum (1)

The entire BEH mechanism is very much ad hoc.

It works, but still an odd construct...

Is it just as Ptolemaic planetary system construct?

It worked extremely well (for centuries!), but was very odd too ...

The Higgs boson conundrum (2)

Higgs potential:
$$V(\Phi) = -\frac{1}{2}\mu^2 |\Phi|^2 + \frac{1}{4}\lambda |\Phi|^4$$

- Unlike for any other field, the minimum of energy is not when there is no field...
- The energy density associated with vev is enormous, $-O(10^{28})$ kg/m³.

To bring it to zero of just above zero not to overclose the Universe, one needs to add a const to $V(\Phi)$ that must be fine-tuned at the level of O(10⁻⁵⁶)

• Can we know more about $V(\Phi)$?

For the BEH mechanism, any potential with an off-zero local minimum would do (it should be renormalizable though)

The Higgs boson conundrum (3)

Higgs boson is a scalar:

- Radiative corrections to its mass (m²) diverge quadratically with momentum scale of particles in the loop. What keeps its mass from running away to Plank's scale? (aka the hierarchy problem: why m_H <<< m_{Plank}?)
- SUSY would solve this elegantly but where is SUSY? If not SUSY, then what?
- Is the Higgs boson a fundamental particle or is it just a composite state, like a pion?

Higgs boson is the only scalar in SM:

- We see many fermions and many vector bosons...
- Are there more scalars out there as well?

The Higgs boson:

- was indeed discovered by ATLAS and CMS in 2012
- has saved the standard model from crumbling down in front of our eyes...

However:

- It is unlike any other particle in SM (and the entire BEH mechanism is very ad hoc)
- It brings new puzzling conundrums...

Hence, the Higgs boson may very well be that brightest lamp post around which BSM physics may reveal itself first – which brings me to the substance of my talk

Outline

Higgs boson mass – in SM, it is the last free parameter

Part 0: measure it as accurately as possible

just as we measure all other SM parameters (couplings, masses, mixing angles/phases)

Searches for BSM in the Higgs sector:

Part 1: search for <u>deviations</u> in the Higgs boson properties from the SM predictions

Part 2: search for explicitly abnormal production/decay modes

Part 3: search for additional scalars

Dataset reminders

Run 1 (2010-2012): 7-8 TeV ~25 fb⁻¹

Run 2 (2015-2018): 13 TeV ~140 fb⁻¹

Run 2 vs Run 1: Higgs boson production cross sections are >2 times larger; integrated luminosity is ~6 times larger

Run 3 (2022-2025): 13.6 TeV ~**300 fb**⁻¹ (40 fb⁻¹ in 2022) <u>triple</u> the current dataset

HL-LHC (2029-2041): 14 TeV ~3000 fb⁻¹

×20 + detector upgrades

the current dataset

Part 0: Higgs boson mass measurement

$\text{H} \rightarrow \text{ZZ} \rightarrow 4\ell \;\; \text{and} \;\; \text{H} \rightarrow \gamma\gamma \; \text{are two workhorse channels}$

CMS best so far:**125.38 ± 0.14 GeV** $(4\ell + \gamma\gamma; 2016 + \text{Run 1})$ ATLAS best so far:**124.94 ± 0.17 GeV** $(4\ell; \text{full Run 2 + Run 1})$

CMS (2016 + Run 1):

$H \to ZZ \to 4\ell \texttt{:}$	125.26 ± 0.20(stat) ± 0.08(syst) GeV
$H \rightarrow \gamma \gamma$:	125.78 ± 0.18(stat) ± 0.18(syst) GeV

<u>Statistical powers</u> of the two channels are similar

Emerging challenge in $H \rightarrow \gamma \gamma$: syst. uncertainties become a limiting factor

Full Run 2: expected precision <100 MeV (better than 1 per mil)</th>HL-LHC:expected precision ~20 MeV

Higgs boson mass: is it just a number?

• The future of the Universe may depend on it!

- With no BSM up to the Plunk scale (really?), the top quark and Higgs boson masses seem to imply we may be leaving in a metastable universe...
- If you about to panic, don't: $\tau_{transition} \sim 10^{600} T_{Universe}$

Higgs boson mass: is it just a number?

• The future of the Universe may depend on it!

- With no BSM up to the Plunk scale (really?), the top quark and Higgs boson masses seem to imply we may be leaving in a metastable universe...
- If you about to panic, don't: $\tau_{transition} \sim 10^{600} T_{Universe}$

Constraints on MSSM

- In MSSM, at tree level, Higgs mass m_H < m_Z = 91 GeV
- It can be higher, up to ~130 GeV, via loop corrections
- Mass m_H=125 is fairly large and sets interesting constraints on the average mass of two stop quarks – no wonder squarks/gluinos are not yet discovered...

Hieu et al. 2017

Higgs boson mass: is it just a number?

• The future of the Universe may depend on it!

- With no BSM up to the Plunk scale (really?), the top quark and Higgs boson masses seem to imply we may be leaving in a metastable universe...
- If you about to get scared, you can relax: $\tau_{transition} \sim 10^{600} T_{Universe}$

Constraints on MSSM

- In MSSM, at tree level, Higgs mass m_H < m_Z = 91 GeV
- It can be higher, up to ~130 GeV, via loop corrections
- Mass m_H=125 is fairly large and sets interesting constraints on the average mass of two stop quarks – no wonder squarks/gluinos are not yet discovered...
- SM mass triangulation self-consistency: $m_W m_t m_H$
 - The recent CDF result (m_w) makes *everyone hold their breath!*

Part 1: Search for deviations from SM-like properties

- Rates in different production and decay modes: test of couplings' strengths with respect to the SM predictions
- Non-SM like structures in production and decay amplitudes: spin-parity, mixed states, compositeness
- Natural width: can provide an indirect sign for presence of abnormal decay modes

	bb	WW	π	CC	ZZ	γγ	Ζγ	μμ	"hopeless": gg, qq, ee
SM Higgs	58%	21%	6.3%	2.9%	2.6%	0.23%	0.15%	0.022%	9%

In green: five well-established decay modes (>5 σ)

In gray: three decay modes being searched for...

	bb	WW	ττ	CC	ZZ	γγ	Ζγ	μμ	"hopeless": gg, qq, ee
SM Higgs	58%	21%	6.3%	2.9%	2.6%	0.23%	0.15%	0.022%	9%

In green: five well-established decay modes (>5 σ)

	bb	WW	π	CC	ZZ	γγ	Ζγ	μμ	"hopeless": gg, qq, ee
SM Higgs	58%	21%	6.3%	2.9%	2.6%	0.23%	0.15%	0.022%	9%

In green: five well-established decay modes (>5 σ)

Emerging challenge:

Experimental uncertainties are getting close to uncertainties in in theoretical calc.

$$\begin{split} H &\to \gamma \gamma: \\ \mu &= 1.12^{+0.09}_{-0.09} = 1.12^{+0.06}_{-0.06} \, (\text{theo})^{+0.03}_{-0.03} \, (\text{syst})^{+0.07}_{-0.06} \, (\text{stat}) \end{split}$$

Search for $H \rightarrow \mu \mu$

SM: $B(H \rightarrow \mu\mu) \approx 0.02\%$

Analysis:

- Two prompt muons
- ggF, VBF, and VH categories
- Look for a small blip, effectively O(1%), in the dimuon invariant mass at $m_{\mu\mu} \sim 125 \text{ GeV}$

	CMS [Run 2]	ATLAS [Run 2]
Significance	3.0	2.0
Signal strength (μ)	1.2 ± 0.4	1.2 ± 0.6

Evidence for the Higgs boson's coupling to the second generation fermions!

Naively, need ~4 times more data to establish this decay (assuming SM) with 5σ: maybe, already in Run 3

Search for $H \rightarrow Z\gamma$

Loop-induced decay in SM

SM: $B(H \rightarrow Z\gamma)B(Z \rightarrow ee/\mu\mu) \approx 0.01\%$

Analysis:

- Two prompt leptons with $m_{\ell\ell}\sim m_Z$
- VBF, VH, and ttH categories + ggF with kinematic discriminant $D_{kin}(\ell \ell \gamma)$
- Look for a small blip, effectively O(1%), in dimuon invariant mass at $m_{\ell\ell} \sim m_H$

2.7

 2.4 ± 0.9

Naively, need ~20 times more data to establish this decay (assuming SM) with 5σ : HL-LHC

Signal strength (μ)

Significance

2.2

 2.0 ± 1.0

Search for VH, $H \rightarrow cc$ (1)

- **SM**: $B(H \rightarrow cc) \approx 3\%$ $B(H \rightarrow bb) \approx 60\%$
- Signal signature: VH, with $H \rightarrow cc$

Need to fight:

- V+jets: huge cross section
- VH, H→bb: <u>20 times</u> the H→cc rate!

Need a two-sided discriminant: q/g-jet vs c-jet vs b-jet

Advanced ML/AI techniques are now being employed and are proved deliver significant improvements in such discrimination

Search for VH, $H \rightarrow cc$ (2)

$VH, H \rightarrow cc$	CMS [Run 2]	ATLAS [Run 2]
Obs (exp, no H \rightarrow cc) 95% CL limit on μ	14 (7.6)	26 (31)
Signal strength (μ)	7.7 ± 3.7	-9 ± 16

Validation process ("standard candle"): $VZ, Z \rightarrow cc$						
Significance	5.7	2.6				
Signal strength (μ)	1.0 ± 0.2	1.2 ± 0.5				

<u>Naively</u>, one would need >100 times more data to see an evidence for this decay (assuming SM) with 3σ To see its evidence at HL-LHC, can we get 5 times smarter?

Established production modes

 gg
 VBF
 WH
 ZH
 ttH
 bbH
 tH

 SM Higgs (σ=55.7 pb at 13 TeV)
 87.2%
 6.8%
 2.5%
 1.6%
 0.9%
 0.9%
 0.2%

In green are five well stablished production modes (> 5σ) All event rates are compatible with the SM predictions

ttH - production mode established most recently (2020)

$ttH, H \rightarrow \gamma \gamma$ (1% of total cross section)

Analysis:

- tt
- two isolated photons
- make sure that other Higgs production mechanisms are suppressed (tt selections) – 99% of Higgs events are BKG!
- look for a peak in the diphoton mass distribution

	CMS [Run 2]	ATLAS [Run 2]	
Significance	6.6	5.2	
Signal strength (μ)	1.38 ± 0.33	1.43 ± 0.37	

Search for rare tH production

Very challenging search

- two diagrams nearly cancel out (0.2% of the total H production cross section)
- **ttH** is a serious background (5 times larger, very similar experimental signature) it is measured in the same analysis flow: $\mu = 0.92 \pm 0.24$

CMS 137 fb⁻¹ (13 TeV) Events 104 Data $ttH(u=\hat{u})$ 10³ Background unc. Data-Bkg. 0.4 Bkg. 0.2 -5 -4 -3 -2 -1 0

log₁₀(S/B)

Analysis: considered events with *electrons, muons, taus, and jets*

- H \rightarrow ZZ, WW, $\tau\tau$
- $t \rightarrow Wb \rightarrow (jj)b \text{ or } (lv)b$

Should one flip relative sign of Higgs-top and Higgs-W couplings, cross section would become 15 x SM. But $B(H \rightarrow \gamma\gamma)$ would increase just as dramatically, which is not...

Observed tH signal strength: $\mu = 5.7 \pm 2.7$ (stat) ± 3.0 (syst)

Hard to project forward as the uncertainty is systematics-limited Naively, to decrease stat uncertainty to 0.2, one needs ~200 times more data

Differential cross sections: Higgs p_T is one of many

Possible BSM information:

- Larger couplings of Higgs to b/c-quarks make the Higgs boson p_T distribution becomes softer
- BSM particles in the gg->H loop make the Higgs boson p_T distribution becomes softer

From the Higgs p_T spectrum: $-13 < \kappa_c < 19$

With added info on observed event rates in all production/decay modes: $-2.7 < \kappa_c < 2.6$ (better than from direct searches for H->cc)

Fit for couplings modifiers

Event rate for
$$ii \to H \to ff$$
: $\sigma_i \mathcal{B}^f = \frac{\sigma_i(\vec{\kappa})\Gamma^f(\vec{\kappa})}{\Gamma_H(\vec{\kappa})}$.

Fit for six Higgs coupling modifiers: κ_{W} , κ_{Z} , κ_{t} , κ_{b} , κ_{τ} , κ_{μ}

Assuming:

- no "new physics" in loop-driven couplings ($H \rightarrow \gamma \gamma$, gg $\rightarrow H$)
- no BSM decays (invisible, not observed)
- couplings to the 1st/2nd–gen. quarks and electrons are SM-like (i.e., small and hence having a negligible effect on the fit)

Impressive precision and agreement with SM (~3% for W and Z!) over **three orders of magnitude** of couplings

Search for HH: why?

Higgs potential:
$$V(\Phi) = V(v+h) = const + (\lambda v^2)h^2 + (\lambda v)h^3 + \frac{\lambda}{4}h^4$$

non-zero curvature defines Higgs mass non-zero 3rd derivative implies trilinear self-interaction non-zero 4th derivative implies quartic self-interaction

Observing trilinear (and quartic) self-interactions

would be a direct experimental evidence for the weirdness of the underlying Higgs boson potential

<u>Deviations</u> from the SM Higgs boson prediction would imply a more complex potential form

1

NB: for BEH mechanism to work, all one needs is a potential that takes minimum at non-zero field

Search for HH production

20000

g 00000

у_t Н

y_t

In SM, $\sigma(HH): \sigma(H) \sim 1:1000$

Three most sensitive decay modes:

- $HH \rightarrow (bb)(bb)$
- HH \rightarrow $(bb)(\tau\tau)$
- $HH \rightarrow (bb)(\gamma\gamma)$

Production modes tags:

- VBF
- untagged (ggF)

Results (95% CL limits)

- HH production signal strength μ < 3.4
- HHH coupling
- **VVHH** quartic coupling

-1.2 < κ_{λ} < 6.5 0.7 < κ_{2V} < 1.4 (0 excluded with ~7*σ*!)

чнн

Andrey Korytov (UF)

LLR, Paris — April 24, 2023

Search for HH: prospects (HL-LHC)

Part 1: Search for deviations from SM-like properties

- Rates in different production and decay modes: test of couplings to SM particles
- Non-SM like structures in production and decay amplitudes: spin-parity, mixed states, compositeness
- Natural width: can provide an indirect sign for presence of abnormal decay modes

INTRO: Higgs bosonic (V) coupling structure

Four-body decay kinematics is sensitive to the HVV coupling structure.

This technique was used to establish π^0 parity in 1962: $\pi^0 \rightarrow \gamma^* \gamma^* \rightarrow$ (ee)(ee)

General Lagrangian for HVV interactions up to dim-5 operators:

$$L = -\frac{a_1}{2\nu} m_V^2 H V_{\mu} V^{\mu} - \frac{a_2}{2\nu} H F_{\mu\nu} F^{\mu\nu} - \frac{a_3}{2\nu} H F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{a_4}{2\nu} H V_{\mu} \Box V^{\mu} + \frac{a_5}{2\nu} \Box H V_{\mu} V^{\mu}$$

SM dim-3 operator In SM: $a_1 = 2$ for ZZ, WW This term vanishes for $\gamma\gamma$ dim-5 operators: must be loop-induced (very small in SM) or, otherwise, non-renormalizable red factors with a_i/v are one of a conventions; they could've been written just as $1/\Lambda_i$

The a_2 term is CP-even. In SM, $a_2 \sim 0(10^{-2})$ [it is actually the lowest-order term for $H \rightarrow \gamma\gamma$] The a_3 term is <u>the CP-odd term</u>. In SM, $a_3 \sim 0(10^{-11})$ [arises from CP-violation in the quark sector] The a_4 term is syst another CP-even distinct operator. In SM, $\sim 0(10^{-2})$ The a_5 term is experimentally <u>indistinguishable</u> from SM in <u>on-shell studies</u> (important for off-shell)

Higgs bosonic (V) coupling structure

ggF.

H

CMS Preliminary

0.2

100

50

Events / bin

VH

HVV, H→4l, Untagged, D_{bkg} > 0.7

0.6

0.8

0.4

D₀₋dec

Analysis:

- decay channel: H→ZZ→4I
- target the three main production modes
- W and ZZ couplings a_i^{WW} and a_i^{ZZ} are related via custodial and SU(2)xSU(1) symmetries:
 - $a_1^{WW} = a_1^{ZZ}$

•
$$a_2^{WW} = \cos^2 \theta_W a_2^{ZZ} + \cdots$$
 (negligible)

- $a_3^{WW} = \cos^2 \theta_W a_3^{ZZ} + \cdots$ (negligible)
- ...
- ME-based discriminants

68% CL:
$$a_3^{ZZ} / a_1^{ZZ} = 0.018^{+0.066}_{-0.034}$$
 (CP-odd admix)
 $a_2^{ZZ} / a_1^{ZZ} = -0.004^{+0.045}_{-0.058}$

Coupling ratios are extracted from ratios f_{a3} and f_{a2} (Approach 2), given in the paper

VBF

gg-fusion selection – red line: SM 0⁺

0-

- blued line:

137 fb⁻¹ (13 TeV)

INTRO: Higgs fermionic (f) coupling structure

General lowest-dim Lagrangian for Higgs-fermion interactions:

$$L = -\frac{m_f}{v} \bar{\psi}_f (\kappa_f + i\tilde{k}_f \gamma_5) \psi_f H$$

$$\kappa_f \text{ term is CP-even}$$

$$\tilde{k}_f \text{ term is CP-odd}$$

$$both \text{ are tree-level (unlike HVV)}$$

$$Pure CP-even \text{ state:} \qquad \alpha = 0^{\circ}$$

$$\rho ure CP-odd \text{ state:} \qquad \alpha = 90^{\circ}$$

SM: $\alpha = 0$ MSSM: $\alpha \approx 0$ nMSSM: α can be large

Higgs CP-odd admixture: ttH

Instead, a BDT-based discriminant is built using CP-even and CP-odd MC models

	CMS [Run 2]	ATLAS [Run 2]
Purely CP-odd ttH coupling is disfavored at	3.7σ	3.9σ
limit on α	$ \alpha < 60^{\circ}$	$ \alpha < 43^{\circ}$

Higgs CP-odd admixture: $H\tau\tau$

Final states used: $\tau_{\mu}\tau_{h}$ and $\tau_{h}\tau_{h}$ $\tau_{\mu} \rightarrow \mu^{\pm}\nu\nu(17\%)$ $\tau_{h} \rightarrow \pi^{\pm}\nu(12\%)$

$$\rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu \ (26\%)$$

$$\rightarrow a_{1}^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \pi^{0} \nu \ (10\%)$$

$$\rightarrow a_{1}^{\pm} \nu \rightarrow \pi^{\pm} \pi^{\pm} \pi^{\mp} \nu \ (10\%)$$

Signal (H) vs Bkg BDT enhances the signal VBF contribution with two forward-backward jets

Building a ME-based discriminants that would account for jet mis-measurements and missing neutrinos is possible, but challenging...

Distributions of angles between planes set by observable particles from decaying tau leptons (ϕ_{CP}) are sensitive to CP-admixture phase α

Pure CP-odd H $\tau\tau$ coupling is disfavored at **3.2** σ Limit on α : $|\alpha| < 36^{\circ}$

Part 1: Searches for deviations from SM-like properties

- Rates in different production and decay modes: test of couplings to SM particles
- Non-SM like structures in production and decay amplitudes: spin-parity, mixed states, compositeness
- Natural width: can provide an indirect sign for presence of abnormal decay modes

Natural width

From the ratio of off-shell to on-shell rates using $H \rightarrow ZZ \rightarrow 2\ell 2\nu$ and $H \rightarrow ZZ \rightarrow 4\ell$

And assuming:

- SM-like amplitude structure for $H \rightarrow ZZ$
- No significant BSM physics in $gg \rightarrow H$ up to $m_{H^*} \sim 1 \text{ TeV}$ (fair, as otherwise we would probably already see it explicitly)

From the combination of all on-shell decays

And assuming:

- SM-like amplitude structure for Higgs couplings
- $|\kappa_w|, |\kappa_z| \le 1$ (fair, as it is hard to build a self-consistent theory violating these conditions)

Part 2: abnormal decay/production modes

Search for $H \rightarrow invisible$

In SM: $B(H \rightarrow ZZ \rightarrow 4\nu) \sim 0.001$

Signature:

- VBF jets

- MET

ATLAS: B(H→inv) < 0.15 at 95% CL (expected 0.10) CMS: B(H→inv) < 0.18 at 95% CL (expected 0.10)

Search for $H \rightarrow invisible$

If DM is due to WIMPs that are lighter than $m_H/2$ and couple to Higgs boson, LHC provides stronger limits on DM than non-accelerator DM searches

Search for CLFV decays: $H \rightarrow \mu \tau$

CMS: PRD 104 (2021) 032013 [Run 2]

Channels used: $\mu \tau_h$, $\mu \tau_e$

Search for $H \to XX \to (\ell \ell)(\ell \ell)$

Search for low-mass dilepton resonances in H125 decays (e.g., a pair of dark photons (Z_d), each of which decays pairs of leptons)

Search for FCNC tqH coupling (e.g., t→qH)

Search:

- consider ttH and tH production
- $\quad H \rightarrow bb$
- $t \rightarrow b(lv)$

Since top is very heavy, this coupling is not much constraint by studies if FCNC decays in light meson systems

ttH: some weak distinction between t->Hu and t->HctH: no experimental distinction between tuH and tcH couplings

 $B(t \rightarrow qH) < 0.1\%$

Most sensitive result thus far

Search for X \rightarrow **HH**

Part 3: Searches for other scalars – why not?

And there are plenty of theoretical motivations!

Model	What is it good for?	Higgs bosons
SM (one doublet of complex scalar fields)	3 d.o.f. give mass to W [±] and Z bosons Yukawa couplings generate fermion masses	h
SM + real singlet	attractive in the context of DM, EWK baryogenesis,	h, H
<mark>SM + 2nd doublet (2HDM)</mark> e.g., MSSM	prerequisite for SUSY natural in Grand Unifying Theories additional source of CP violation DM originating directly from 2HDM	h, H, A, H [±]
2HDM + complex singlet e.g., nMSSM	resolves the μ-problem in MSSM h(125) is unnaturally heavy in MSSM – not in nMSSM	h₁, h₂, h₃, a₁, a₂, H [±]
SM + triplet	gives a natural explanation for small neutrino masses	h, H, A, H [±] , H ^{±±}

Searches for other scalars...

Lots of them at LHC (and elsewhere!)

To cover this domain would require a whole other seminar

In brief, all searches have come back with null results (indeed, otherwise, you would certainly already know!)

We will keep digging and sifting...

Summary

Run 2: current status

- The discovered Higgs boson
 - mass = 125.38 ± 0.14 GeV (best measurement thus far; not yet final from Run 2)
 - deviations from SM Higgs boson properties null results
 - **must keep looking**: the discovery of CP-violation in the Kaon system is a lesson!
 - **emerging challenge:** experimental uncertainties in some measurements approach the accuracy of theoretical predictions
- Searches for explicitly abnormal decay/production modes null results
- Searches for additional scalars null results

Run 2: more results are still to come: in particular, ATLAS+CMS combinations

Run 3 (2022-2024):

- expect to triple statistics of the current dataset
- and ATLAS and CMS are even more capable detectors in Run 3 than before!