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High Energy Particle 
IDentification (PID)

Quach Christine

————————— An update on what I’ve been working on so far ————————— 
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Outline.

1. Setting the Context: SK/HK experiments 
and Existing PID Algorithms  


2. My Work: Adapting Algorithms for High 
Energy Neutrinos 


3. What’s next?
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A. Super-Kamiokande: Operational Principles 
and Observed Neutrinos


B. Current State of PID Algorithms

Setting the Context
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1 A. Super-Kamiokande: B. Current State of PID Algorithms

ExperimentsSetting the 
Context

Super-Kamiokande


▪ 41.4 m in height and 39.3 m 
in diameter, which holds 
approximately 50 ktons of 
ultrapure water. 


▪ 11,146 PMTs

Hyper-Kamiokande


▪ An order of magnitude 
bigger than SK,


▪ 71 m in height and a 
diameter of 68 m


▪ 2 0 0 0 0 u l t r a - h i g h 
sensitivity PMTs
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1 A. Super-Kamiokande: B. Current State of PID Algorithms

Observed neutrinosSetting the 
Context

Relic Supernova neutrinos
▪ Neutrinos were produced in a 

supernova that occurred in the 
distant past and is still traveling 
through the universe today. 


▪ # of events in SK: 10/year. 


▪ Energy: 2 MeV (LOW)


▪ Provide a unique opportunity to 
s t u d y t h e p r o p e r t i e s o f 
supernovae and the physics of 
the early universe

Solar neutrinos 
▪ Neutrinos produced in the 

S u n b y n u c l e a r f u s i o n 
reactions. Vast majority of 
neutrinos passing through the 
Earth


▪ Most of solar neutrinos have 
energy below 10 MeV


▪ Representation of the flux as a 
function of the energy of solar 
neutrinos according to the 
Standard Model of the Sun

▪ Neutrinos coming from a 
supernova explosion


▪ Energy ranging from 10 to 
30 MeV. (HIGH)


▪ Interest ing part ic les to 
observe to understand the 
p h y s i c s b e h i n d t h e 
explosion as neutrinos hold 
99 % of the information 
about the explosion. 

Transient Supernova 
neutrinos 
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1 A. Super-Kamiokande: B. Current State of PID Algorithms

Neutrino detection methodSetting the 
Context

Cherenkov light

▪ The neutrino that interacts with electrons or nuclei 

in water produces a charged particle moving faster 
than the speed of light in water, which is slower 
than the speed of light in a vacuum. 


▪ A cone of light is formed as a result, which is 
known as Cherenkov radiation.


▪ The equivalent in the optical field is the sonic 
boom. PMTs record the Cherenkov light projected 
as a ring on the wall of the detector. 
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1 A. Super-Kamiokande: B. Current State of PID Algorithms

Setting the 
Context

Muon (Sharp) Electron (Blurry)

Neutrino detection method
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1 A. Super-Kamiokande: B. Current State of PID Algorithms

Low energySetting the 
Context
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2 My work
A. Key Challenges in PID


B. Adapting BDT Algorithm for High Energy 
Neutrinos


C. Adapting GNN Algorithm for High Energy 
Neutrinos
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2 A. Key Challenges in PID B. Adapting BDT

Identification of particles in 
levels of difficulties 

My work

C. Adapting GNN
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• e/mu particle identification 


• e/gamma particle identification 


• e/pi0 particle identification 


• mu/pi+ particle identification


• Multiple ring fit

Muon (Sharp) Electron (Blurry)
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Distribution of Discriminating VariablesMy work

C. Adapting GNN
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3 What’s next?
A. GNN : ideas for improvement


B. BDT : ideas for improvement
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3 A. GNN future improvements B. BDT future improvements

GNN

What’s next?
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• Finishing the Optimization the hyperparameters 
of the GNN


• Quantify the efficiency and precision of the GNN 
classification mu/e then identify the physical 
parameters of the GNN by comparing the 
distributions 


• Do the same for e/gamma separation


• Optimize the parameters of the GNN at variable 
energy. 


• Parallelization of the GNN training

• Finding better cuts and study the correlation 
between built distributions 


• Take GNN’s output parameters as inputs for the 
BDT


BDT
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