


High Energy Particle
IDentitication (PID)

An update on what I've been working on so far
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1. Setting the Context: SK/HK experiments
and Existing PID Algorithms

2. My Work: Adapting Algorithms for High
cnergy Neutrinos

3. What's next?



o Setting the Context

A. Super-Kamiokande: Operational Principles
and Observed Neutrinos

B. Current State ot PID Algorithms



o A. Super-Kamiokande: B. Current State of PID Algorithms

Setting the Experiments
Context
@xwooo
41.4 m in height and 39.3 m ol
in di ter, which hola
in diameter, whic olds (?xltmé

approximately 50 ktons of %
ultrapure water.

11,146 PMTs

An order of magnitude
bigger than SK,

/17 m in height and a
diameter of 68 m

20 000 wultra-high
sensitivity PMTs



B. Current State of PID Algorithms

Setting the Observed neutrinos

Context

Neutrinos were produced in a
supernova that occurred in the
distant past and is still traveling
through the universe today.

# of events in SK: 10/year.
Energy: 2 MeV (LOW)

Provide a unique opportunity to
study the properties of "
supernovae and the physics of

the early universe

Neutrinos produced in the
Sun by nuclear fusion
reactions. Vast majority of

neutrinos passing through the
Earth ]

Most of solar neutrinos have

energy below 10 MeV )
Representation of the flux as a
function of the energy of solar

neutrinos according to the
Standard Model of the Sun

0

Neutrinos coming from a
supernova explosion

Energy ranging from 10 to
30 MeV. (HIGH)

Interesting particles to
observe to understand the
physics behind the
explosion as neutrinos hold
99 % of the information
about the explosion.



o A. Super-Kamiokande:

B. Current State of PID Algorithms

Setting the Neutrino detection method

Context

Cherenkov light
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= [ he neutrino that interacts with electrons or nuclei

in water produces a charged particle moving faster

t
t

nan the speed o

nan the speed of

-~ light in water, which is slower

ight in a vacuum.

= A cone of light is formed as a result, which is

known as Cherenkov radiation.

= The equivalent in the optical field is the sonic

boom. PMTs record the Cherenkov light projected

as a ring on the wall of the detector.



B. Current State of PID Algorithms

Setting the Neutrino detection method
Context

Muon (Sharp) Electron (Blurry)



o A. Super-Kamiokande: B. Current State of PID Algorithms

Setting the Low energy
Context

Why a Graph Neural Network (GNN)?

» A Boosted Decision Tree (BDT) has been developed. Can we do better?
- Use of Deep Learning

» Why not a Convolutional Neural Network (used for image analysis)?
- One would need to stack images to have the time information of an event
(instead of one small graph for a GNN)
- Small number of hits for the neutron capture on H (a GNN will not be
confused with useless information and therefore processed faster)
= Smaller dataset and faster processes

- No direct relation between hits (one can add more complex information on
graphs) = More flexible inputs



A. Super-Kamiokande: B. Current State of PID Algorithms

Setting the Low energy
Context

Architecture example

» 2 layers of DynamicEdgeConv [1801.07829, Wang et al., 2019]:

» Connects closest (euclidian distance) nodes in feature space by edges

» Edge features: Information about x; (node feature i) and X; — X; (relative
difference to nearest neighbours)

x”
"
. - '& / 4
DynamicEdgeConv 4 DynamicEdgeConv \ 1. Pooling
(+ Activation, &7 (+ Activation, / )¢ .
i A S . Concatenation
‘ Normalization Normalization .
and Dropout) and Dropout) X3
. \x"
5
v J Features/Node 64 Features/Node 64 Features/Node 1D Output

Convolutional Part
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A. Super-Kamiokande: B. Current State of PID Algorithms

Setting the Low energy
Context

Architecture example

DynamicEdgeConv

‘ 'ﬁ.
‘ (+ Activation, 4
Normalization =2

. and Dropout)

_ 3 Features/Node 64 Features/Node 64 Features/Node 1D Output 'j

"

=)

"
* DynamicEdgeConv \ 1. Pooling
_ Xy —_p

(+ ACt'Yat'?“: 2. Concatenation
Normalization o
and Dropout) X3 \

b

Convolutional Part

LogSoftmax

Activation and
Normalization

Normalization

0 | Noise

1D Input Hidden Layers | Signal _ :

“Classification Part
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o My work

A. Key Challenges in PID

B. Adapting BDT Algorithm for High Energy
Neutrinos

C. Adapting GNN Algorithm for High Energy
Neutrinos
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e B. Adapting BDT C. Adapting GNN

My work Identification of particles in
levels of difficulties

® ¢/mu particle identification

® c¢/gamma particle identification
® ¢/pi0 particle identification
® mu/pi+ particle identification

® Multiple ring fit

Muon (Sharp) Electron (Blurry)
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e A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Distribution of Discriminating Variables

|l. DISTRIBUTION OF
DISCRIMINANT VARIABLES

TO SEE IF THERE ARE ANY RELEVANT THID VARIABLES

14
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My work

B. Adapting BDT

Distribution of Discriminating Variables

Charge Profile

Charge
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A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Distribution of Discriminating Variables

Explication pour le mu ; ChargeProbie_pmiType0
* Broadening within the ring (see diagram) — o~y
Hence, the peak shift is not exactly at L Rug X
42° ~
* And thus, as the standard deviation is gamma
lower (compared to electron and gamma
O
which are also broadened externally),
the maximum value is higher.
* Charge per unit angle is higher for
muons, dominating over the total charge
since they are less scattered. ~ © g e e o
8o 100 120 140 160 180
Theta —
BRI

ey
)0 » difadion p, .
Nabex

wall o} PNTS
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A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Distribution of Discriminating Variables

Explication pour |'électron :

* A similar phenomenon as for muon, N [ ChargeProfie_pmiTyped |
but with an additional factor: ﬁ .' vy 529

* The electromagnetic cascade. L RMS ~ ®
. . . o
* Distribution broadened both inside -
and outside the ring gamme
* Symmetrization is due to the solid ¢
angle in sin theta, | believe: ¢
because normally there are more
events inside the ring.
.......... é...m...1®...'éox;:"‘.o'...'é‘)__b.‘m
Theta
— e -—
| = .-
L e L ety R = TP TN Yoy 08y !‘“.m
‘ I e »_,.,,..M,.,\-uw,,m¢~w~vm.wf{'vlﬂ’ i
< ey e ‘
-t > . — e
g e LSy
X 4
‘0

17



A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Distribution of Discriminating Variables

Explication pour gamma :

x10°* \ ChargeProfile_ pmtTyped

* (As for electrons): Compton effect and ol Ermies 2206207 |
. I Meanr
electromagnetic cascade also need to be | S | 30 |
taken into account. d —
* The dominant process at high energy: e I
pair production of positron and electron Ozso§
* Impact on the width of the distribution 200|
around the peak (but low impact) ol
el
2 S0
" . ™ T 7 7 T T
N Theta
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A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Distribution of Discriminating Variables

Calculation of t-tof as a function of particle
progress X:

Thiorews oAl Kasha .

Evolution de t-tof en fonction de I'avancement de la particule

« X_tof =20

1971 . Xtof=15 AC‘- ABY+ gC? - 2ABKBC CO\L'H‘O(,\
« X tof =10 (S

5] ¢ Xtof=5 9‘0"":

;[f:". A n; - AN* nzMCﬂ-&.\

0 -+
3 ay Aolwivon s (P)
-5 “
(P): "zz--!.u.mlﬂ'oc\ ) *ét""m) A%
-10 - < | L 42 °
O R S - bo{ .
U"j = . = dg(n) bo‘
15 A ——
v T " - : : ' Y ‘-& ‘d’ den 1 C
-20 -15 -10 -3 4 5 10 15 20 .
Avancement de la particule (m) "
w.:p % «~-0c
= AT e >
A v iy B )
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A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Distribution of Discriminating Variables

Avancement de 'a partkcule (m)

[
| | 2. Vol foin -du pinl dimston _de 7,
| |
| l | &
(y) : x=x_tof T‘
>

e ‘

Pour t-tof positif : T
Pour x>0 } 42°
| l |
| | |
Evolution de t-tof en fonction cg I'avalhceme{n de l% particule { ¢
wdl ® X_tof =20 ; ; ; - ‘
+  X_tof =15 : , P Ve X
— *
e X _tof =10 | ' v ?
¢| *© Xtof=s ' A v ovix ) _
| l A, B C fixés, angles déduits
0 Pour t-tof négatif :
..;;:' : : ' n % )tfg‘ =) f,-oo} 40 .
“ -5 I ) | 4. toailcule u“fm de e’
LN Fd
| | !
~10 4 I I l &
l l | - - Tx
A X 8
! ! |
-15 4 ] ] I \ ) N ) J
. ' v ' . - v cr(p) - douc NDAB) ) ey §Swo,T
-20 -15 =10 -5 ) L I lls 20 mp A" P g Y Swi
|
I

>4
-
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My work

A. Key Challenges in PID

B. Adapting BDT

Distribution of Discriminating Variables

* Pour x<0

Evolution de t-tof en fonction c‘e I'avancement de la particule

e X _tof =20
071+ x_tof =15 -
_J-'-'—
X_tof =10 =
X _tof =5 —
5
0
0
2
-5
-10 4
-15 +
-20 =15 =10 =5 ) S 10 15 20

Avancement de la particule (m)
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t-tof FORCEMENT positif

four L0 =) trroj \\O N
b 42"
A
?//
g
'3‘0‘ slalleas ngy L
ns0

* The two processes are equivalent only in the
sense that both lead to the same theta
value, but the t-tof will be positively
increasing in the direction of decreasing
negative x valuves.

* The other path does not correspond to
anything real in our case.

C. Adapting GNN



B. Adapting BDT

My work Distribution of Discriminating Variables

t-TOF Profile
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A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Distribution of Discriminating Variables

Explication pour le mu :

Shifted peak:
x10° . TemeTOFProfie prtTyped
200 - Ennes 2286257

* Muon is about 2 times more energetic than
each particle of the positron-electron pair, it - | e
will pass through the Cherenkov threshold 250 - —
later, so statistically, there is a higher chance - -
that theta will be small, hence x = x_tof, 200 1 S
resulting in negative t-tof. This shifts the peak. v

Decreasing part: T

* This corresponds to Cherenkov photons ool
produced by the parent particle moving in its :
direction, after creation at the vertex. 50 -

* We see that Q decreases more quickly than —
for electrons. This is because muon passes -10 [ T
through the Cherenkov threshold more rapidly -
than electrons. | = Y- 7 —1 =

Increasing part: :

* Very steep, so few Cherenkov photons coming
from charged particles whose trajectory is
positively deviated.

i

eI I ettt bt me St e .. ———— . ——— . ————— . ————— b bbbt bbbl bbbt
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My work

Distribution of Discriminating Variables

 lica " .
Shifted peak:

Same as for muon.

Decreasing part:

This corresponds to Cherenkoy
photons produced by the parent
particle moving in its direction, after
creation at the vertex.

We see that Q decreases more
quickly than for electron. This is due to
the fact that muon passes through the
Cherenkov threshold more rapidly
than electron.

Increasing and decreasing parts:

Increasing part slightly less steep than
for muon. Electromagnetic cascade
populates both sides of the peak, so
the decreasing part is also less steep.

A. Key Challenges in PID

B. Adapting BDT

24

10

t-TOF

C. Adapting GNN

TimeTOFProlile_pmiType0

| “Entries 2286297
Mean 2282
RMS , 6.85°

gamma

W -~




My work

A. Key Challenges in PID

Distribution of Discriminating Variables

Explicati .
* Overall: distribution is much broader than for e-.
* Maximum charge per PMT: For the e+ /e- pair, 2 times

smaller than for e- and mu-. The maximum is found at t=tof.
This seems consistent with the fact that when e+ and e- are
very close to the vertex, the two generated photons are
more likely to hit the same PMT. (The maximum charge per
PMT does not allow for differentiation between e- and mu-
because at the vertex there is no electromagnetic cascade
effect, whereas, for the pair production, there is already a
deviation in trajectory.)

In the increasing part, the same as for the electron.

Wider distribution: for t-tof on either side of the peak, less
steep rise and fall due to electromagnetic shower effect
AND ADDITIONALLY angle between e+ /e- direction.
Conclusion: the difference between e- and e+ /e- appears
more pronounced concerning the charge profile because t-
TOF is a variable equivalent to a length, unlike theta, thus
we can better see the energy difference of the pair
production.

B. Adapting BDT

25

C. Adapting GNN

Tme TOFProtie pmitTyped
Entres 228623
Wea 22K
RS 685
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My work

A. Key Challenges in PID

B. Adapting BDT

C. Adapting GNN

Distribution of Discriminating Variables

2 1400 e Without randomization:
2 ;‘;38& 0?;%2 * Mu is less scattered, so lower
3 1200 | average std.
fnJTm * Event by event: the std of gamma is
g 10 gamma_10k larger than that of e because event
% a0 by event gamma is more random
o due to pair production.
1+ 600 * The std of mu is generally larger
because it fits Gaussian, and mu is
400 skewed.
- With random:
0: BN/ § T W, e * Difficult to distinguish particles from
. : ¢ ot ° 0 ams of Ch}:ge Profie oe1f4e-.-ent each other... maybe try another fit?
Mean = 7.57311e+00 Mean = 4.55252e+00 Mean = 7.61257e+00 Mean : 4.54 e-03, 5.23 e-03,
Sigma = 4.47620e-01 Sigma = 3.59515e-01 Sigma = 4.50241e-01 4,61 e-03
Sig/mean = Sig/mean = 0.07897054817  Sig/mean =0.05914441509  Sigma : 3.84 e-03, 3.55 e-03,
0.05910649653 Ecart : 33.607222228 % Ecart : 0.06415294802 % 3.95 e-03
Mean = 7.80574e+00 Mean = 4.96763e+00 Mean = 7.84185e+00 Mean : 5.61 e-03, 8.67 e-03,
Sigma = 5.58229%9e-01 Sigma = 5.57641e-01 Sigma = 5.47913e-01 5.64 e-03
Rdm  gig/mean = Sig/mean =0.11225493847  Sig/mean =0.06987037497  Sigma: 4.61 e-03, 5.82 e-03,
0.07151519266 Ecart : 56.9665609428% Ecart : 2.29995561617%

20

4.85 e-03 n



e A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Distribution of Discriminating Variables



e A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Distribution of Discriminating Variables

1. STUDY OF THE
CORRELATION BETWEEN
DISCRIMINANT VARIABLES

C'EST DES TH2D ICI DU COUP

28



B. Adapting BDT

Distribution of Discriminating Variables




A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Distribution of Discriminating Variables

Electron Muon

.

<" L
* R .: - oa ;. . o v ~'.0 18 e
AL R - savan ¥ N el B
-10 N ® e e -"'”t: ‘ooﬁ%’& — e .o Sees I .\ 1 * T s . - . “an e 1
0 20 40 60 80 100 120 140 160 180 20 40 60 ‘20 ‘40 160
Theta Theta The ta
* Mvu

More concentrated near 42°, few events at small t-tof after 42°. No scattering effect or electromagnetic
shower, resulting in a very clear break.

Charge peak at t-tof<0, but near 40°.

* Electron

The charge is more scattered at a given t-tof, due to electromagnetic cascade. The peak at t-tof<0, near 42°.
Distributed more or less uniformly around 42°, with a preferential direction.
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A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Distribution of Discriminating Variables

Electron Gamma
§ 50. § w. |
40 40. s
304, 30 4
(18 (18
5 w
=20 =20
=% .
10
. . A I a5 : - - . . ~ 'H '
o - RGP, . - rJ...: =f . . 0!. ®9 . - oo ' ’. ...\’ .‘ ‘.«. ~;..~-
. . » ’ L. ) \o. 1 a i ... a . - - . . . - ' y -~ L. N * o..ooo .. s 0
o I e (5 g G e T T e e, oy Sty v L I,
0 20 40 60 80 100 120 140 160 " 0 20 <0 60 80 100 120 140 160 180
Theta Theta Theta Theta

* Gamma
Significantly weaker charge. At t-tof=0, highly scattered, and has no real preferential direction.

* Electron
The charge is more scattered at a given t-tof, due to electromagnetic cascade. The peak at t-tof<0, near 42°.
Distributed more or less uniformly around 42°, with a preferential direction.
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A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Distribution of Discriminating Variables

Electron Muon

T-TOF

o
1"y .
20 40

Theta Theta

* Motivation
We want to observe the correlations between the variables theta and t-tof. This is why we plot the TH2D.

32



A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Distribution of Discriminating Variables

Electron Gamma

T-TOF

33



e A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Distribution of Discriminating Variables

B n ” 5\

S T, £l B 2 Il
1IN, 1™1V1 )
[N
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e A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Distribution of Discriminating Variables

[1l. STUDY OF THE IMPACT OF
DETECTOR EFFECTS

RECONSTRUCTION EFFECT, WATER ABSORPTION EFFECT, AND
RAYLEIGH SCATTERING EFFECT

35



B. Adapting BDT

Distribution of Discriminating Variables

—

of reconstruction
errors




My work

A. Key Challenges in PID

B. Adapting BDT

C. Adapting GNN

Distribution of Discriminating Variables

We study the influence of the

reconstruction error on the charge profile

with an error of:

* 20 cm on the reconstruction of the vertex
position

* 2.5 degrees in the direction

Expected effect

We would expect the overall amplitude to
be attenuated because changing the initial
vertex position results in a more scattered
distribution, thus decreased amplitude,
increased standard deviation, and
unchanged integral.

Observation

The charge profile, which takes this error
into account, has a lower amplitude, but the
mean is preserved: we can still distinguish
between a mu and an e. The distinction
between e and gamma is more difficult to
make after randomization.

450

400

350

300

250

200

150

100

S0

x10°

20 40 60 80 100

Theta Theta

o @ ——- g e~
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ChargeProfile_pmtType0

Entries 2286297
Mean 53.29
RMS 30
e
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A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Distribution of Discriminating Variables

x10° TimeTOFProfile_pmtType0
We study the influence of the s 322: ; 2282.22%71
reconstruction error on the charge ; RMS 6.852
profile with an error of: 00 0
* 20 cm on the reconstruction of the mu

vertex position 400 - bl
* 2.5 degrees in the direction '
300 e
Expected effect O
We would expect the overall
amplitude to be attenuated, with less 200
effect on long-time photons because
the further away from the vertex, the 100 .
less the initial position has an impact. ‘ ff'f“--\ﬂ-__\
Observation % 0 10 20 30 40
t-TOF

Amplitude attenuation on Q. No shift |
of the mean (ratio plot). We can still ’ =
distinguish between gamma and e. |
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B. Adapting BDT

Distribution of Discriminating Variables




My work

A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

Distribution of Discriminating Variables

x10° ChargeProfile_pmtType0
250 Entries 2286297
Mean 53.11
RMS 29.96
Study of the influence of water
. 200 0
absorption: .
The characteristic length of 1.3 minus 1 oamme
sigma = 0.07. 480
The effect of water absorption o
We would expect a major influence/ 100

decrease on long-time photons

populating the outer ring because those

that pass through more material have a 50 .

higher absorption probability. And less

impact on gamma, more on mu and e. ‘
0 20 40 60 80 100 120 140 160 180

Observations Theta

No major changes, a small shift for the A—

muon, because less in the outer ring. |
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My work

Distribution of Discriminating Variables

Study of the influence of water
absorption:

The characteristic length of 1.3 minus
1 sigma = 0.07.

The effect of water absorption

We expect less population in the
long-time, i.e., outer ring for mu and e
(a little for gamma), and internal /
external for e and gamma due to the
shower.

Observations

Weaker overall impact. Still, presence
of a shift for mu and e and a slight
shift to the left of gamma, so the
distinction is possible between e and
gamma.

A. Key Challenges in PID

350

250

350

100

x10°

B. Adapting BDT

t-TOF

41
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C. Adapting GNN

TimeTOFProfile_ pmiType

Entries 2286297
Mean 2.273
RMS 6.908
mu
gamma
40




B. Adapting BDT

Distribution of Discriminating Variables
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My work

A. Key Challenges in PID

B. Adapting BDT

C. Adapting GNN

Distribution of Discriminatina Variables

Study of Rayleigh scattering:
0.75 characteristic length minus 1
sigma = 0.42 and at 0.1.

Effect of Rayleigh scattering

It is expected that the photons that
travel the most will be more
scattered, especially those at the
outer edge of the ring for mu, int/ext
for e, and more for gamma.

Observations

The greater the effect of Rayleigh
scattering, the more the amplitude is
attenuated. The distribution appears
wider for mu. But by looking at the
ratio plot, e can still be distinguished
from mu.

250

200

150

100

x10°

20 40 60 80 100
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ChargeProfile_ pmiType0

Entries 2286297
Mean 53.11
RMS 29.96
C
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gamma
120 140 160 180
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My work

A. Key Challenges in PID

B. Adapting BDT

C. Adapting GNN

Distribution of Discriminating Variables

Study of Rayleigh scattering:
* 0.7 characteristic length minus 1
sigma = 0.42 and at 0.1.

Expected effect
* It is expected that there will be
fewer populations in the long/

positive time, resulting in a shift to
the left.

Observations

* Shift to the left for all distributions,
so it's okay, but e can still be
distinguished from gamma.

* On the ratio plot, after 15 ns. It
moves the peak.

x10°
400

350

250

L1
b
o

20
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TimeTOFProfile_pmtType0
Entries 2286297

Mean 2.273
RMS 6.908
mu
gamma
30 40




B. Adapting BDT

Distribution of Discriminating Variables
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A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Distribution of Discriminating Variables

Crawval™itbe ovnt T e’

.\mo; NSOCUIChargePrcfie et Typed
axco. T g Entries 10000
i 4\ | Mean 1220
| 900
e /| 3 Std Dev 246
o A = 800 | e_10k
)aooo 700 ' mu_ 10k
20000 | gamma_10k
5 600
10000 |
. 500
400 H
300
200
100 . r
B . N R Mie o
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Q>=50
| = =
N=50
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My work

A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

Distribution of Discriminating Variables

10" Tme TOFProtie pmtTyped
300 Eniries 2286297
250 " NI BCUTImeTOF Prolie pl Typed
| € 1400 Entries 10000
e % Mean 156.4
S Std Dev 3545
| = 1200
Q10 | e 10k
| ' mu_ 10k
100 | 1000 gamma_10k
50 800
0 10 0 ¢ ' . 20 600
t-TOF
400
200
% s 100 150 200 250 300 350 00 450
-TOF<=-1.8

- VP g g
(- en
o~

==1.8
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A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Hyper Parameters optimization

Parameter importance with respectto ||| accuracy bl
Q. Search {’é} Parameters }; 1-4~ of4
Config parameter Importance @ Correlation
batch_size R G
learning_rate g e
k G e
nb_conv_layers & @
Parameter importance with respectto (/|| _runtime b
Q Search {5} Parameters /C‘ 1-4~ of4
Config parameter Importance @ V¥ Correlation
batch_size @ G
k g g
nb_conv_layers &= {
learning_rate & &
48




0.65

0.6

0.55

0.5

e A. Key Challenges in PID

Hyper Parameters optimization

My work
K accuracy
— k: 60 ¢ = k: 40 = k: 20
‘ \
4“' 1‘ / ‘“ |
{ \/'\v\/‘
|

80

Step

B. Adapting BDT

C. Adapting GNN

Conv Layers accuracy

= nb_conv_layers: 5 e = nb_conv_layers: 3 e = nb_conv_layers: 4 o
= nb_conv_layers: 7 e e = nb_conv_layers: 6 e

0.65
0.6
0.55

0.5

Step
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A. Key Challenges in PID

B. Adapting BDT

My work Hyper Parameters optimization

Batch size accuracy

= batch_size: 16 ¢ = batch_size: 32 e
= batch_size: 4

0.65

o: W%A/ WAL x/\ ‘/\ﬂ

0 20 40

= batch_size: 64 e

vﬂ\/

60 80

Step

50

0.7

0.6

0.5

0.4

Learning rate accuracy

C. Adapting GNN

= learning_rate: 1.000e-8 e = learning_rate: 0.000001 e
= learning_rate: 0.0001 e = learning_rate: 1.000e-7 e
e = learning_rate: 1.000e-10 o
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A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Hyper Parameters optimization
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A. Key Challenges in PID B. Adapting BDT C. Adapting GNN

My work Hyper Parameters optimization
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o What's next?

A. GNN : ideas for improvement

B. BDT : ideas for improvement
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o A. GNN future improvements B. BDT future improvements

What's next?

GNN BDT
Finishing the Optimization the hyperparameters @ Finding better cuts and study the correlation
of the GNN petween built distributions

Quantify the efficiency and precision of the GNN @ Take GNN's output parameters as inputs for the
classification mu/e then identity the physica BDT

parameters of the GNN by comparing the

distributions

Do the same for e/gamma separation

Optimize the parameters of the GNN at variable
energy.

Parallelization of the GNN training
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