Physics results from CUPID-Mo exploiting the new background model

LÉONARD IMBERT P2IO MEETING 24/05/2023

Neutrinoless double beta decay

2νββ

- \circ 2n -> 2p + 2e⁻ + 2 $\overline{\nu_e}$
- Standard Model process
- Possible for 35 nuclides
 - Even-Even nucleus
 - Observed for 9 isotopes

0νββ

- Hypothetical decay
- ° 2n -> 2p + 2e⁻
- Lepton number violation ΔL = 2
- Majorana neutrino $u = \bar{\nu}$
- Majorana neutrino is needed in leptogenesis to explain the matter/antimatter asymmetry

n

p

Searching for $0\nu 2\beta$

The shape of the two-electron sum-energy spectrum enables to distinguish between the 0ν (new physics) and the 2ν decay modes

- Requires :
 - $\circ\,$ Low background in the ROI (around the $Q_{\beta\beta}$)
 - Good energy resolution

Bolometric technique

Source = Detector

- Crystals cool down to ~ 10-20 mK
- Detector = source
 - High detection efficiency
- Good energy resolution

- Scintillating bolometers
 - $\circ\,$ Discriminations between β/γ and α particles
 - Heat and Light signals

CUPID-Mo

Demonstrator for the next generation ton scale experiment CUPID

Installed at Laboratoire Souterrain de Modane (LSM)

Installed in EDELWEISS cryostat

¹⁰⁰Mo $Q_{\beta\beta}$ = 3034 keV

- 20 Li₂¹⁰⁰MoO₄ scintillating bolometers
- 0.2 kg Li₂¹⁰⁰MoO₄ cylindrical crystals
- 100 Mo enrichment ~ 97 %
- Ge wafers as Light Detectors (LD)
- NTD Ge thermistors
- Copper holders, PTFE supports, Reflecting foils
- Materials radioactivity have been measured by HPGe or ICPMS

CUPID-Mo Data production

Exposure : 2.71 kg.year acquired between March 2019 and June 2020

CUPID-Mo performances and Ovßß limit

Performance close to the CUPID goals reached :

- Energy resolution: ~ 7.4 +/- 0.4 keV FWHM @ 3034 keV
- $\,\circ\,$ Crystal radiopurities: < 0.5 $\mu Bq/kg$ for ^{228}Th and ^{226}Ra
- $\,\circ\,$ $\alpha\text{-particle}$ rejection: > 99.9 %
- $^\circ\,$ Selection efficiency: ~ 90 %

Limit on $0\nu\beta\beta$ half life

 Blinded analysis on full exposure of 2.71 kg×year of data (1.47 kg×year for ¹⁰⁰Mo)

> T_{1/2} > 1.8 × 10²⁴ γ (90% Cl) m_{ββ} < (280 - 490) meV

Most stringent limit for ¹⁰⁰Mo EPJC 82 (2022) 11, 1033

Goal : Describe the experimental data by a linear combination of the MC spectra

arXiv:2305.01402 Submitted to EPJC

Background model

CUPID-Mo simulations

- Geant 4 based program
- Decays are generated in :

Surface component : Exponential density profile e^{-x/λ}

- Cryostat and shields
- Crystal bulk and surface
- Reflector bulk and surface

Close sources

Geant4 Rendering of the Edelweiss set up with the CUPID-Mo detectors as implemented in the simulations

Background Model : results

Excellent signal to background ratio Allows for :

- Precise measurement of the $2\nu\beta\beta$ half life
- Studies of the spectral shape
- Limits on BSM processes

$2\nu\beta\beta$ half-life measurement

Most precise measurement of $2\nu\beta\beta$ decay in any isotope

Work ongoing to consider theoretical uncertainties related to the spectral shape of the $2\nu\beta\beta$

Decay process of ¹⁰⁰Mo $2\nu\beta\beta$

Theoretical uncertainties related to the $2\nu\beta\beta$ spectral shape Due to uncertainty of the intermediate virtual state

Commonly 2 hypothesis are considered:

• Ground state of ¹⁰⁰Tc

• HSD :

Disfavoured by the bkg model fit (p-value \sim 0)

- Higher states of ¹⁰⁰Tc
- $^{\circ}$ Lepton energies are negligible compared to the ^{100}Tc energy level

Work ongoing to use an improved theoretical model considering the lepton energies (from Fedor Simkovic)

This procedure allows the factorization of NMEs and phase-space factors

Permit to evaluate the values of the NMEs for the $2\nu\beta\beta$

NEWI

BSM processes

- \circ Majoron bosons can explain $0\nu\beta\beta$
 - Several models exists
 - $^\circ\,$ Emission of 1 (a) or 2 (b) Majorons
 - Continuous electron sum energy spectrum

\circ Lorentz violation (2v $\beta\beta$)

- $\circ\,$ Could be revealed by the neutrino momentum
- \circ q ~ a_{of}⁽³⁾
- $\circ a_{of}^{(3)} = C \cdot \Gamma_{LV} / \Gamma_{SM}$

\circ Sterile neutrino (2v $\beta\beta$)

 $\circ\,$ Affects the end point of the $2\nu\beta\beta$

n n A-2 n n Scheme n n Experimentally these models produce a distortion of the $2\nu\beta\beta$ spectrum

A-2

Can be parametrized as : spectral shape ~ $(Q_{\beta\beta}-E)^n$

Emission of 1 Majoron : n=1, 2, 3 Emission of 2 Majorons : n=3, 7

Lorentz Violation : n = 4

(a)

 $e_{\bar{}}$

р

p

(b)

р

p

A-2

A-2

Spectral shape – BSM processes

LÉONARD IMBERT

PRELIMINARY

Measurement of $Q_{\beta\beta}$

- $\,\circ\,$ Possible shift between γ and $\beta\beta$ events in calibration
- Some theoretical works suggested a value different from the accepted one (3034.40(17) keV)
- Decay rate is parameterized by :

 $d\Gamma/dE = A(E) \times (Q_{\beta\beta} - E)^5$

- The data are fitted in a Bayesian approach with background coming from the background model fit
- Can be visualized by a Kurie plot (commonely used for single beta decay)

 $K_i(E) = (n_i - f_B(E_i)/A(E_i))^{1/5} = Q_{\beta\beta} - E$

Q_{ββ} = 3038.4 +/- 1.5 (stat.) +/- 7 (syst.) keV

 n_i : number of counts in bin i f_b : background shape

Conclusion

Thanks to the background model we can obtain new physics results:

 $^{\circ}$ Most precise measurement of the 100 Mo $2\nu\beta\beta$ half-life

 $^{\rm o}$ Spectral shape analysis of the $^{100}Mo~2\nu\beta\beta$ spectrum

• Limits on BSM processes

 $^{\circ}$ Measurement of the 100 Mo Q_{$\beta\beta$}

BACK-UP

Results : $M_{1,\beta/\gamma}$

