

Development of a cryogenic veto system for CEvNS detection

in the scope of the NUCLEUS experiment

P2IO BSM-Nu workshop, May 24th, 2023

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

Study CEvNS from reactor (anti-)neutrinos

Coherent Elastic Neutrino-Nucleus Scattering

Reactor CE ν NS experiments

@Brokdorf reactor (KBR) (Germany)

Significant **overburden** ≈ 24 m.w.e.

Outer Shielding

- Borated Polyethylene
- 25 cm radiopure Pb
- Muon Veto
- Stainless Steel

Background measurement

Overall background suppression via passive and active shield

From W. Maneschg (Magnificent CE vNS, March 2023)

Reactor $CE\nu NS$ experiments

@ILL-H7 nuclear reactor site (Grenoble)

Target detectors:	١
Ge (& Si ?)	i
ightarrow ionization and heat	ļ
(target RMS: 20 eV _{ee} , 10 eV _{nr})	1

Inner Shielding: 30 cm PE/Cu ۲

- 15 cm Pb/Cu
- Cryogenic Muon Veto
- Mu-Metal

Outer Shielding

- 35 cm PE
- 20 cm Pb •
- Muon Veto Soft Iron

Significant **overburden** \approx 15 m.w.e.

From G. Chemin and J. Billard (Magnificent CE vNS, March 2023)

Chloé Goupy

•

Reactor CE ν NS experiments

@Chooz power plant (France, Givet)

Inner Shielding:

- Inner Veto This talk
- Cryogenic Outer Vet
- Cryogenic Outer Veto
- 4 cm B_4C
- 20 cm Borated PE/Cu
- 5 cm Pb/Cu
- Cryogenic Muon Veto

Shallow overburden \approx 3 m.w.e. and **small foot print** required: a few m²

(known) Background prediction

Background contribution	CaWO ₄ array		
Rates in kg ⁻¹ d ⁻¹ (Preliminary)	10 – 100 eV	100 eV – 1 keV	1 keV – 10 keV
Ambient gammas	$0.5\substack{+0.9 \\ -0.3}$	$4.1^{+1.7}_{-1.4}$	92±7
Atmospheric muons	$1.2^{+0.9}_{-0.8}$	$2.7^{+1.3}_{-1.1}$	9.3±1.9
Atmospheric neutrons	≈ 9	≈ 24	≈ 90
Total	≈ 11	≈ 30	≈ 190
CEvNS signal	≈ 30	≈ 9	_

Estimated background rate in ROI (10 eV – 100 eV) \approx 120 ev/kg/d/keV

Chloé Goupy

(target thr $\approx 20 \text{ eV}_{nr}$)

Outer Shielding

5 cm Pb

Muon Veto

20 cm Borated PE

Development of a germanium cryogenic veto

- 6 HPGe crystals
- 4π -coverage active veto
- Fast detector response
- Anti-coincidence with bolometric detectors
- O(10keV) threshold
- Compactness

 \Rightarrow Good gamma (and moderate neutron and muon) veto

Preliminary

crystals with different active vetoes (simulation without the B₄C layer)

Experimental setup:

2 HPGe crystals (ionization channel) \rightarrow a) and c) + 1 Li₂WO₄ crystal in the center (heat channel (NTD), "target detector") \rightarrow b)

Edel WE'ss

Bolometers At Sub KeV Energy Thresholds

Measurements with and without:

- 5-cm thick lead shielding,
- Neutron source (²⁵²Cf)
- Gamma source (²³²Th)

Simulation of the setup Data described by 3 components at surface:

Fit of the signal component fluxes on the data :

- Good understanding of our data and the signal component
- Simple analysis of the germanium detectors
- Correct simulation of the expected events

Preliminary

Background contribution	Fluxes (/cm ² /s)			
0	This work	Reference values		
Atmospheric muons	$(1.79 \pm 0.02) \times 10^{-2}$	$(1.90\pm0.12)\times10^{-2}$ from [1		
Environmental gammas	3.126 ± 0.005	$3.2 \pm 0.3^{\star}$		
Atmospheric neutrons	$(1.37\pm0.27) imes10^{-2}$	1.34×10^{-2} from [2]		

Table 1: Fitted values for the integrated fluxes of each background contribution.The errors given are fit errors calculated only from statistic errors.* Measured value in the lab with a high purity germanium spectrometer.

Article in preparation

[1] Tang, et al. Physical Review, 2006 [2] Gordon, et al Nuclear Science, 2005

Comparison with the simulation

 Really good agreement between veto rejection obtained in the data and in the simulation

Rejection power by the Ge veto in the Li_2WO_4

Preliminary	No shielding		With shielding	
Energy Range	Data	Simulation	Data	Simulation
[0.05;20] MeV	22.0 ± 0.5 %	22.4 ± 0.4 %	$30.8 \pm 0.5 \%$	30.1 ± 0.7 %
[0.05;3] MeV	$20.4 \pm 0.5 \%$	$22.0 \pm 0.4\%$	26.3 ± 0.5 %	28.8 ± 0.8 %
[3;10] MeV	$93.1 \pm 3.4 \%$	$84.2\pm 0.9\%$	$93.2 \pm 2.0\%$	84.4 ± 2.0 %
[10;20] MeV	$78.4 \pm 3.3~\%$	$81.7 \pm 1.3~\%$	$80.2 \pm 2.1 ~\%$	81.3 ± 2.2 %

Towards a 4π veto for NUCLEUS

With a 4π , 2cm-thick system: rejection efficiency estimated at 95% \Rightarrow Development of this veto for NUCLEUS

Cylindric crystal (10-cm diameter, 2.5-cm thick, 1kg)

Rectangular crystals (7 x 2.5 x 5 cm, 500g)

Electrode evaporation and tests @IJCLab

Electrode evaporation: \rightarrow 30 nm of a-Ge:H \rightarrow 200 nm Al electrode

Chloé Goupy

Towards a 4π veto for NUCLEUS

In the NUCLEUS cryostat for the commissioning:

- First light in March 2023
- Base temperature (7mK) achieved

Next steps:

- Long time measurement
- Background spectrum
- Final acquisition scheme
- Run in anti-coincidence with the NUCLEUS target detectors

Towards a 4π veto for NUCLEUS

From blank assembly towards on-site installation

May 2023

Blank Assembly & commissioning

- \rightarrow Mechanical integration tests
- \rightarrow Calibrations at keV energies and below:
 - LED
 - XRF
 - Neutrons with CRAB (JINST 16 P07032 (2021))
- \rightarrow Detector performances
- \rightarrow Background studies at sub-keV (EXCESS)

On-site installation

Beginning 2024

Full COV installation

- \rightarrow Background measurement in the UGL
- \rightarrow Shielding efficiency characterization

NUCLEUS-10g physics run Phase 1: observe CEvNS

Towards NUCLEUS-1kg Phase 2: measure CEvNS at the several % level

2024

Thanks for your attention

https://nucleus-experiment.org

Development of a cryogenic veto system for CEvNS detection

in the scope of the NUCLEUS experiment

Back-up slides

Differential cross section

$$\frac{d\sigma}{dE_r} = \frac{G_F^2}{4\pi} Q_w^2 F^2(q^2) m(Z,N) (1 - \frac{E_r}{E_{r,max}})$$

 G_F : Fermi constant $Q_w = N - Z(1 - 4sin^2\theta_W) \sim N$: Nuclear weak charge F: Nuclear form factor, depends on q^2 q: Momentum transfer m(Z, N): Total mass of the nucleus E_r : nuclear recoil energy $E_{r,max} = 2E_v^2/(m(Z, N) + 2E_v)$: maximal recoil energy

Non-standard interactions

$$\sigma \sim \left[Z \left(g_V^p + 2\epsilon_{\alpha\alpha}^{uV} + \epsilon_{\alpha\alpha}^{dV} \right) + N \left(g_V^n + \epsilon_{\alpha\alpha}^{uV} + 2\epsilon_{\alpha\alpha}^{dV} \right) \right]^2$$
$$g_V^p = + \frac{1}{2} - 2\sin^2\theta_W$$

Prototyping a germanium veto

Analysis details

Energy resolution

Energy resolution

Accidental events in veto

Higher rejection if no accidental correction is applied \Rightarrow Not the true coincidence rate.

- correction important in the gamma range- less important at higher energy (> 5 MeV)

COV prototype simulation

Multi-steps fitting procedure

 $\boldsymbol{\phi}$

Step 3 : Gammas

 ϕ_{γ}

Step 4 : Am241

Calibrated and time normalized data

 ϕ_{μ}

 ϕ_n

 ϕ_{γ}

Fit results – Bot Ge

Bot Ge (COV1) - 0-20MeV Bot Ge (COV1) - 0-4MeV 10⁵ 10[£] Differential Rate (.d⁻¹.kg⁻¹.keV⁻¹) E Differential Rate (.d⁻¹.kg⁻¹.keV⁻¹) Data - no shielding Chi2/dof = 15174.00 / 499 = 30.41 Simu μ Simu y 10⁴ Simu n 10⁴ Simu Am Sum 10³ 10³ Chi2/dof = 2584.38 / 99 = 26.10 No. 10² 10² 10 10 1 10⁻¹ 10⁻¹ 10^{-2} 10 Residuals [%] Residuals [%] An 1 A. -20 -40 -60 -60 -1-σ -80 -100 -80 -100^Ĕ0 20 0.5 2.5 3.5 10 12 14 16 18 1.5 2 2 6 8 3 4 Reconstructed energy [MeV] Reconstructed energy [MeV]

Fit results – Top Ge

Remark: Rate lower in Top Ge than in Bot Ge the cryostat has a shielding effect*.

Fit results - LWO

Mid LWO (NTD) - 0-6MeV Mid LWO (NTD) - 0-20MeV 10⁵ 10[£] Differential Rate (.d⁻¹.kg⁻¹.keV⁻¹) E Differential Rate (.d⁻¹.kg⁻¹.keV⁻¹) Ē Data - no shielding Chi2/dof = 5131.89 / 499 = 10.28 Simu μ Simu y 10⁴ 10' Simu n Sum Saleston . 10³ 10³ Chi2/dof = 2388.81 / 99 = 24.13 10² 102 10 10 1 10-1 10 10-2 10 Residuals [%] Residuals [%] -1-σ -40 -60 -80 -100 -80 -100 14 16 18 20 Reconstructed energy [MeV] 20 10 12 2 3 2 6 8 5 4 4 6 Reconstructed energy [MeV]