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Outline

• How to make a neutrino beam for long-baseline neutrino
experiments

• Accelerators for neutrino beamlines

• Neutrino beamline components

• Neutrino fluxes

• Errors on neutrino fluxes

• Using the J-PARC neutrino facility as an example
! Neutrino source for current T2K and future Hyper-K

experiments in Japan
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Producing A Neutrino Beam

• High energy protons from an accelerator hit a production target and
produce hadrons

• Outgoing hadrons are sign selected + focused in electro-magnetic
focusing horns

• Change polarity of horn field to switch between focusing positive or
negative hadrons

• Allow hadrons to decay in long decay volume: ⇡+ ! µ+ + ⌫µ, ..
• Monitor hadrons in hadron monitor at downstream of decay volume,
or muons in muon monitor installed in shielding/beam dump

• Stop protons, hadrons, muons, in beam dump or ground, while
neutrinos continue on to near and far detectors 3 / 43



Increasing the Neutrino Flux
• Neutrinos are very weakly interacting – want to increase the
neutrino flux as much as possible

• How do we increase the number of neutrinos?
! First step is to increase the number of protons

• Two ways to increase the proton beam power:
1 Increase the frequency, number of beam spills

• Increase beam repetition rate
• (Maximize beam operation time..)

2 Increase the number of protons per spill
• Reduce beam instabilities and beam losses

• Of course, after increasing the proton beam power, all components in
the neutrino extraction beamline must be able to handle the
increased power

• – And – there are ways to increase the e↵ective number of protons
• i.e. improve the target to increase right-sign hadrons, increase/tune

the horn current for better right-sign hadron focusing

• Also important to run the neutrino experiment as much as possible !
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High-Power Proton Source – J-PARC

• Accelerates proton beam to 30 GeV by:
• 400 MeV Linac (linear accelerator) ! 3 GeV RCS (Rapid Cycling

Synchrotron) ! 30 GeV MR (Main Ring Synchrotron)
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Ion Source
• Accelerator chain begins with an ion source

• Radio-Frequency (RF) driven plasma discharge
• Produces H� ions (proton with 2 electrons)
• Why use an H� source, rather than proton ?

• H� easier to handle at ion source
• After acceleration in Linac, stripping charge to convert to protons

allows for easy separation between particles (opposite forces in
applied field)

Figure from https://doi.org/10.1063/1.4995773
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Radio-Frequency (RF) Cavities

• Radio-frequency cavities are the building block of any accelerator
• High-frequency, high-power electromagnetic cavities

• Charged particles traveling through the cavity at the correct timing
and energy are accelerated

• By an electrical impulse from the field produced by the RF cavity

7 / 43



Beam Transport
• Particle beams are transported through beam ducts

• Beam ducts and accelerating cavities where the particles travel must
be kept at high vacuum

• To prevent collision of the particles accelerated inside the beam ducts
with gas molecules in the beam pipe

• Charged particles of the same charge sign repel each other
(space-charge e↵ects from the Coulomb force)

• Must prevent beam size blow-up by focusing the particle beam
• Use focusing magnets (quadrupole magnets) with some periodicity to

focus the particle beam as it propagates

Figure from
https://j-parc.jp/c/facilities/accelerators/index.html 8 / 43
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Linear Accelerator (LINAC)
• Accelerates 50keV H� ions from the ion source to 400MeV by four
stages of DC linear accelerators:

• Radio Frequency Quadrupole Linac – 50keV ! 3MeV
• Drift Tube Linac – 3MeV ! 50MeV
• Separated-type Drift Tube Linac – 50MeV ! 191MeV
• Annular-ring Coupled Structure linac – 191MeV ! 400MeV

Figures from
https://j-parc.jp/c/facilities/accelerators/index.html
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H� Stripping
• H� ions are stripped of two electrons (converted to protons) after
acceleration in the linac, as they are being injected into the next
accelerator (RCS)

• This conversion means that the particles move opposite directions in
the applied magnetic field

• Use a very thin charge-stripping foil (carbon)
• More advanced techniques – laser stripping – under development

• At injection point (bunching), again need to worry about beam blow
up by space-charge e↵ects

• RCS injection point:

• Particles come from the
linac (right) and enter the
RCS (left)

https://j-parc.jp/c/facilities/accelerators/index.html10 / 43
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Rapid Cycling Synchrotron (RCS)
• In a linear accelerator, each particle only passes through each RF
cavity a single time

• In a circular accelerator, the beam is recirculated >10,000 times,
passing each accelerating cavity each time

• In a Synchrotron, the fields which bend the particle around the fixed
orbit increase “synchronized” with the increasing particle energy

• J-PARC RCS:
• ⇠350m circumference
• Accelerates protons

400MeV ! 3GeV
in ⇠20ms

• Operation cycle of 25Hz
• Injection, acceleration,

extraction, field
decrease happen in
40ms

https://j-parc.jp/c/facilities/accelerators/index.html
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Main Ring Synchrotron (MR)

• J-PARC Main Ring
Synchrotron

• Accelerates protons
3GeV ! 30GeV

• 3-fold symmetric
straight and bending
sections

• 1568-m circumference

• 8-bunch beam
structure

• 3 116-m-long straight sections dedicated to:
• Injection and beam collimators
• Slow extraction
• Fast extraction and RF system

! Fast extraction to neutrino target
12 / 43



Fast Extraction System
• Beam is extracted from the MR by kicker and septum magnets

• Kicker magnet applies a time-dependent magnetic field
• Fast, precise timing is necessary

• Septum magnet applies a space-dependent magnetic field
• Field localization is important – high field at extraction line must

drop to 0 at recirculating line

T. Yasui, NuFact2022 13 / 43



Beam Dump

• The beam dump is another component that can limit the operation
of the accelerator

• During MR beam study/tuning, or when the beam is aborted, the
beam is kicked to a beam dump

• The current J-PARC MR beam dump is passively cooled iron blocks
in concrete

• Operational capacity of only ⇠18 shots per hour at full beam power
– significantly limits time which can be spent on accelerator tuning,
especially as beam intensity is increased

• Now considering upgrades to increase capacity 3⇠4⇥

C. Densham, NBI2022
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Typical MR FX Operation

T. Yasui, NuFact2022
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MR Upgrade Operation

T. Yasui, NuFact2022
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Increasing the MR Proton Beam Power
• In 2020, J-PARC MR accelerator delivered
⇠ 2.65⇥ 1014 protons every 2.48 seconds = 515 kW

• Now increasing the beam power in 2 ways:
• Upgrade PSs + RF to reduce the time between beam spills from

1 spill every 2.48s ! 1.36s ! 1.16s
• Improve stability to increase the number of protons per spill from

⇠ 2.65⇥ 1014 ! 3.2⇥ 1014 515 kW ! >700 kW ! 1.3 MW
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MR Upgrades Towards 1.3MW

Prog. Theor. Exp. Phys. 2021, 033G01
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MR Power Supply Upgrade
• New MR magnet power supplies with energy recovery with capacitor
banks developed

• Allow for 1.36s repetition rate

• Installed in 2021

• Power supplies tested in-situ in April and May 2022

• Took first neutrino beam with 30GeV, 1.36s cycle repetition protons
from the J-PARC MR in April 2023 ! Achieved record 540kW!
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High-Power Proton Source – J-PARC

• Accelerates proton beam to 30 GeV by:
• 400 MeV Linac (linear accelerator) ! 3 GeV RCS (Rapid Cycling

Synchrotron) ! 30 GeV MR (Main Ring Synchrotron)
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High-Power Proton Source – Fermilab
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J-PARC Neutrino Beamline
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J-PARC Neutrino Primary Beamline
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J-PARC Neutrino Primary Beamline

• Arc section : superconducting
combined-function magnets

• Used to sharply bend the
beam towards the Super
Kamiokande direction

• Preparation section : normal
conducting dipole and
quadrupole magnets

• Used to bend and focus the
proton beam extracted from
the MR accelerator

• Prepare the beam to be safely
transported through the
superconducting Arc section

• Final Focusing section : normal
conducting dipole and
quadrupole magnets

• Used to bend and focus the
proton beam correctly onto
the neutrino production target

• Proton beam position, angle,
size at the target must be
carefully controlled

24 / 43



Beam Monitoring
Beam Direction !

Beamline Final Focusing Section
• Beam monitors are essential for protecting beamline equipment and
understanding proton beam parameters for flux simulation

• At J-PARC neutrino beamline, various monitors are installed along
the beamline:

• Current Transformers – monitor beam intensity
• Beam Loss Monitors
• Electrostatic Monitors – monitor beam position
• Segmented/Wire Secondary Emission Monitors – non-continuously

monitor beam profile
• Optical Transition Radiation Monitor – continuously monitors beam

at target
• Muon Monitor – monitors tertiary muon beam profile
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Neutrino Secondary Beamline

• Neutrino production target and focusing horns for J-PARC neutrino
beamline are kept in a gigantic He vessel

• ⇠1500 m3 He vessel (world’s largest?)
• He-filled to minimize production of tritium and NOx by interaction of

high-energy hadrons with air
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Neutrino Production Target
• Goal for target – increase the number of proton interactions as
much as possible to maximize the number of neutrinos produced

• Another important part – Don’t degrade ! Don’t break !
• J-PARC neutrino production target consists of a long, monolithic
carbon target

• 91.4cm long (1.9 interaction length), cooled by He gas
• Other world-wide targets have di↵erent configurations (ie array of
fins, di↵erent materials, water cooling, etc)

• R&D to establish new target
types to further maximize
number of produced neutrinos is
ongoing

• Higher-density and/or hybrid
materials, longer targets
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Neutrino Production Target Upgrade Ideas
• Longer term studies to establish new target types to further
maximize number of produced neutrinos are also ongoing

• Possible to increase pion yield and decrease forward-going
(non-horn-focused) wrong-sign component by new target design

• Higher-density and/or hybrid materials, longer targets

One example new target idea – insert 2nd (higher density?) target into
downstream end of Horn 1:

University of Glasgow, RAL
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Electromagnetic Focusing Horns

• Electromagnetic focusing horn consists of inner and outer conductor
• Large magnetic field between conductors achieved by flowing high

current down one conductor and back along the other
• Generally 100–300 kA – T2K used 250kA, now upgraded to 320kA

• Pions of the correct sign traveling between two conductors are
focused

• Sign of focused pions chosen based on direction of flowed current
• Generally cooled by water spray between 2 conductors
• J-PARC has 3 horn configuration (other beamlines in the world have
1⇠3 horns)

• Horn 1 over-focuses some outgoing particles, Horns 2 and 3 correct
path of focused and over-focused particles
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J-PARC Horns

• Horn 1 (bottom) and Horn 3
(right)

• Horns held in place from above
by support modules mounted to
ceiling of He vessel
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Decay Volume and Beam Dump
• Decay volume is just a big
empty space where particles
produced in the target can
propagate and decay

• J-PARC neutrino beamline has
96m-long decay volume (similar
at facilities around the world)

• J-PARC neutrino beamline
decay volume is connected to
He vessel – also He-filled to
minimize production of tritium
and NOx by interaction of
high-energy hadrons with air

• Beam dump is graphite + iron
blocks (⇠5m) to stop hadrons

• Water-cooled by coils 31 / 43



Hadron/Muon Monitor

• Detect hadrons or muons after
decay volume to understand
hadron/muon (+ neutrino) beam
direction, profile

• Upstream (hadron monitor) or
inside (muon monitor) of the
beam dump

• Use large array of radiation-tolerant
detectors to reconstruct the
hadron/muon beam profile
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T2K Muon MonitorsMUMON (Muon Monitor)
• Continuously monitors muon beam
profile downstream of the decay
volume, beam dump (>⇠5 GeV
muons)

• Ensure alignment, healthiness of
target, horns; proton beam
position, angle at target; etc

• 2 redundant measurements of the
muon beam profile, position using
7x7 arrays of sensors

• Ionization chambers (IC) w/ Ar or
He gas

• Silicon photodiode sensors (Si)

• Same IC design used at Fermilab
NUMI beamline

• Now developing upgraded sensors;
Electron Multiplier Tube (EMT)
under testing 33 / 43



Controlling the Flux – O↵-Axis Beam
• “O↵-axis” beam concept :

• Due to pion decay
kinematics, the neutrino
energy depends on the
outgoing neutrino angle:

E⌫ = (1�(mµ/m⇡)
2)E⇡

1+�2✓2

• So, an “o↵-axis” beam
gives a smaller range of
neutrino energies

• Many experiments use an
o↵-axis beam to select a
neutrino flux with a peak
energy near the oscillation
maximum

Flux + Osc. Prob. at T2K

• Install detectors o↵-axis from the center of the neutrino beam to
select the energy

• Precise understanding of the neutrino beam direction essential 34 / 43



Flux Prediction
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• It is essential to not just produce a world-class neutrino beam, but
also to understand the energy spectrum and number of produced
neutrinos

• The ⌫ flux is predicted by simulations which take into account
• Hadron interactions inside + outside the production target
• Measured proton beam current, position, angle, profile
• Measured neutrino beam angle
• Measured Horn field, alignment
• etc..
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Neutrino Parent Particles
• ⌫µ parent particle is mostly pions, which

decay into µ+ ⌫µ 99.9% of the time

• However, kaons and other particles also
contribute, especially at higher energies –
produce some ⌫e ’s, as well as muons

• Muons also decay, always produce ⌫µ + ⌫e
• Need to understand neutrino parent particles

produced inside and outside of the target
! External hadron production experiments
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Neutrino Parent Interactions
Percentage of neutrino-mode T2K far detector
flux from in-target or out-of-target interactions :

• In-target primary interactions are the main contribution
• However, there is a significant contribution from secondary+tertiary
and/or out of target interactions, especially for the wrong sign flux
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T2K Neutrino Fluxes
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Neutrino-Mode
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Antineutrino-Mode

• Accelerators can produce a relatively pure beam of right-sign muon
neutrinos (ie ⌫µ’s in neutrino-mode and ⌫̄µ’s in antineutrino-mode)

• At J-PARC:
• ⇠3% contamination of beam wrong-sign ⌫µ at flux peak
• <1% contamination of beam ⌫e at flux peak
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Systematic Errors on the Neutrino Flux
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• Total current flux errors are around ⇠5⇠10% near the flux peak for
various experiments

• Can be (significantly) higher at low and high energies

• Significant contribution from hadron production uncertainties
• As hadron production errors are reduced by external measurements,
errors related to beamline hardware are becoming important
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Hadron Production Errors on the Neutrino
Flux
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• Hadron production errors are coming from numerous relatively small
sources – non-trivial to reduce (although we’re working on it!)

• Especially, interactions not constrained by external measurements –
“Unconstrained interactions” – are becoming important

• Try to constrain by additional data from dedicated hadron production
measurements: NA61 @CERN, EMPHATIC @FNAL
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Hadron Production Errors on the Neutrino
Flux
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• These unconstrained and out-of-target secondary interactions are
even more of an issue for the wrong-sign neutrino flux and beam
intrinsic electron neutrino flux
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Non-Hadron Production Errors on the
Neutrino Flux
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• Non-hadron production errors (beamline hardware related errors)
can also have ⇠5% energy-dependent contribution

• Becoming more important as hadron production errors are reduced
• These errors are related to beamline hardware, so can be
time-dependent – need to worry about correlations between
di↵erent run periods, etc
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Conclusion

• Many components required to produce a high-intensity neutrino
beam:

• Proton source
• Proton beam transport to the production target
• Proper beam monitoring
• Production target
• Focusing horns
• Decay volume/beam dump
• Tertiary beam monitoring

• Essential to have a stable, high-intensity proton source

• Essential to have neutrino beamline components robust to beam
heating, radiation damage, ...

• Essential to have a well-understood beamline in order to have a
well-understood/well-constrained neutrino flux
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Neutrino Parent Particles
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Neutrino parent particles
are mostly pions, kaons
produced in the target

⇡± ! µ± + ⌫µ(⌫̄µ) (BR=99.99%) (right-sign low-E ⌫µ’s)
K± ! µ± + ⌫µ(⌫̄µ) (BR=63.6%) (right-sign high-E ⌫µ’s)�

µ± ! e± + ⌫̄µ(⌫µ) + ⌫e(⌫̄e) (BR=100%) (right-sign ⌫e ’s)

KL ! ⇡± + µ⌥ + ⌫̄µ(⌫µ) (BR=27.0%) (right- and wrong-sign ⌫µ’s)
KL ! ⇡± + e⌥ + ⌫̄e(⌫e) (BR=40.6%) (right- and wrong-sign ⌫e ’s)
.... 45 / 43



Neutrino Parent Particles
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Neutrino parent particles
are mostly pions and kaons
produced in the target, but
can also be from particles
produced by secondary
interactions of protons and
neutrons (+ pions, kaons,
...) in other materials
around the beamline

⇡± ! µ± + ⌫µ(⌫̄µ) (BR=99.99%) (right-sign low-E ⌫µ’s)
K± ! µ± + ⌫µ(⌫̄µ) (BR=63.6%) (right-sign high-E ⌫µ’s)�

µ± ! e± + ⌫̄µ(⌫µ) + ⌫e(⌫̄e) (BR=100%) (right-sign ⌫e ’s)

KL ! ⇡± + µ⌥ + ⌫̄µ(⌫µ) (BR=27.0%) (right- and wrong-sign ⌫µ’s)
KL ! ⇡± + e⌥ + ⌫̄e(⌫e) (BR=40.6%) (right- and wrong-sign ⌫e ’s)
.... 46 / 43



Neutrino Parent Particles
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• Main contribution of right-sign flux from right-sign pions near flux
peak, right-sign kaons at higher energies

• Then hadrons produced by proton interactions with materials
outside of the target, then others..
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Neutrino Parent Particles
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• Main contribution of wrong-sign flux from wrong-sign pions, muons
from right-sign pion decay

• Then hadrons produced by proton/neutron interactions with
materials outside of the target
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Neutrino Parent Particles
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• Main contribution of ⌫e flux from muon decay from right-sign pions
and kaons

• Then K 0, hadrons produced by proton/neutron interactions with
materials outside of the target, ...
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Neutrino Parent Particles
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• Main contribution of ⌫̄e flux from K 0
L , then muon decay from

wrong-sign kaons
• Then hadrons produced by proton/neutron interactions with
materials outside of the target, muon decay from wrong-sign pions,
...
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Beam Monitoring
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Beam Intensity Monitoring
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Current Transformer Concept
• A proton beam with current Ibeam generates a magnetic field, B, as
it travels

• Exactly like a wire carrying a current
• The magnetic field is felt by a transformer core around the beamline

• Magnetic field in core induces a secondary current, Isec on a wire
coiled around the core

• The beam acts as primary winding with Nbeam = 1, so :
• Ibeam/Isec = Ntorus/Nbeam ! Isec = Ibeam/Ntorus

• Can measure beam current by adding a resistor and using Ohm’s
Law : V = R ⇥ Isec ! Isec = V /R

• So : Ibeam = Ntorus ⇥ V /R
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Current Transformer Concept
• When the proton beam travels along the beamline, a ⇠equal but
opposite “image charge” is induced on the (conducting) beampipe

• This image charge basically cancels
the beam current, making
monitoring through the beam pipe
impossible !
• Must put a non-conducting “break” in the beamline to see the
beam (ceramic works well)

• High-frequency component of the image charge goes through series
of resistors over the gap (so, not seen by the CT)

• Conducting shell around the CT should allow the low-frequency
component of the image charge to pass
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T2K Current Transformers
5 CTs (Current Transformers) + 2 R&D PPS-CTs
• Monitor proton beam intensity
• Cylindrical ferromagnetic core made of FINEMET® (nanocrystalline
Fe-based soft magnetic material) from Hitahi Metals

• 50-turn toroidal coil
• Stainless steel + iron outer casing
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Signal From Current Transformers
• CT is read out/digitized by 160MHz ADC

• Integrate total charge seen by CT, then convert to # of protons
(1 proton = 1.602⇥ 10�19 C)

• Very clearly see the time structure of the J-PARC proton beam
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Beam Loss Monitor
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Beam Loss Monitor
• Wire proportional counter filled with a mixture of ⇠90% inert gas +
⇠10% quench gas

• Ionizing particle produced by beam loss travels through the
chamber, ionizes inert gas in the chamber, produces e� – ion+ pairs

• Number of pairs proportional to the energy of the particle
• An electric field in the chamber causes positive ions to drift towards
the cathode and electrons towards the anode

• Near the anode wire, the field strength is large enough to produce
an avalanche to multiply the electron signal for readout

• Should only produce one avalanche per electron-ion pair for linear
response
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T2K Beam Loss Monitors
50 BLMs (Beam Loss Monitors)

• Continuously monitor beam loss

• Wire proportional counter filled
with an Ar-CO2 mixture

• Ionizing particles produced by
beam loss ionize gas in chamber
⇠proportional to amount of
beam loss

• Actually, some BLM response
function needed..

• Down to very low levels of loss

• The BLM signal is integrated
during each beam spill, and if it
exceeds a set threshold a beam
abort interlock signal is fired

! Extremely important for
protecting beamline equipment and
understanding residual radiation of
beamline components

• R&D for new BLM types (optical fiber, etc) is also underway at T2K
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Beam Position Monitoring
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Beam Position Monitor
• Standard beam position monitor uses 4 segmented cylindrical
electrodes surrounding the proton beam orbit

• Beam passage induces charge on electrodes proportional to distance
from that electrode

• Asymmetry between signal from opposite electrodes gives beam
position inside the beampipe :
• CR�CL

CR+CL
gives beam X position

• CU�CD
CU+CD

gives beam Y position
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T2K Beam Position Monitors

21 ESMs (Electrostatic Monitor) used in
T2K extraction beamline

• Non-destructively, continuously
monitor the proton beam position

• Uses 4 simple, curved electrodes
• Can be non-linearites, second

order e↵ects, especially away
from monitor center

• Can be e↵ect due to scattered
particles from other beam
monitors

• Improved designs, beyond
simple 4-electrode one, also in
use at di↵erent facilities
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Beam Profile Monitoring

• Beam profile = beam position + beam width
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Optical Transition Radiation Monitor
(OTR)

• Optical Transition Radiation is produced when a charged particle
travels between two materials with di↵erent dielectric constants

• Light profile is proportional to charged particle beam profile

• If the material (foil) is placed at 45� with respect to the beam, can
measure backwards-going OTR light at 90� from the beam direction

64 / 43



T2K Optical Transition Radiation Monitor

1 OTR (Optical Transition Radiation Monitor)

• Continuously monitors beam
profile directly upstream of the
target

• Rotatable disk with 8 foil
positions allows for many OTR
target types

• 50-µm-thick Ti foil designed
for standard data-taking

• Ceramic foil (which produces
fluorescent light) used for very
low intensity beam

• Ti foils with holes used for
optical system calibration by
back-lighting
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T2K Optical Transition Radiation Monitor

1 OTR (Optical Transition Radiation Monitor)

• Continuously monitors beam
profile directly upstream of the
target

• T2K OTR monitors
backwards-going light from foil

• Light is directed to TS ground
floor by a series of 4 mirrors
and then monitored by a
radiation-hard camera
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Secondary Emission Monitor

Secondary Emission Profile Monitor Principle

• Protons interact with foils inserted into the beam
• Secondary electrons are emitted from segmented cathode plane and
collected on anode planes

• Proportional to proton beam profile

• Compensating charge in each cathode strip is read out as positive
polarity signal
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T2K Secondary Emission Monitor

T2K Profile Monitor : Segmented Secondary Emission Monitor (SSEM)

• Same principle, but single anode plane between two stripped
cathode planes used to collect electrons

• 1 stripped plane for X, 1 for Y

• 5 µm thick Ti foils
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T2K SSEMs
19 SSEMs (Segmented Secondary Emission Monitor)
• Measure beam profile during tuning

• 1 SSEM causes 0.005% beam loss
! Only most downstream SSEM
(SSEM19) can be used continuously

• Two 5-µm-thick titanium foils
stripped horizontally and vertically,
with a 5-µm-thick anode HV foil
between them

• Strip width ranges from 2 to 5 mm,
optimized according to the expected
beam size

• Remotely move into and out of the
beamline

• SSEM19 is used for beam interlock –
if beam profile at the target is outside
of the allowed range, beam abort
interlock signal is fired
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T2K Proton Beam Profile Monitor R&D
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Why Is Non-Destructive
(+ Minimally-Destructive) Proton Beam

Monitoring Important?
• Standard monitors measure the beam profile by intercepting the
beam – they are destructive and cause beam loss

• Absolute amount of beam loss is proportional to beam power and
volume of material in the beam

• Beam loss can cause :
• Irradiation of and damage to beamline equipment
• Increased residual radiation levels in the beamline tunnel

• Foils in the beam may degrade
• Rate of degradation will increase as the beam power increases

• The beam profile must be monitored continuously
• So, R&D for J-PARC proton beam profile monitors that work well at

high beam power is ongoing
• Goal : reduce or eliminate beam loss due to profile monitor
• Goal : work well for a long time, even at high beam power
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Measured Beam Loss Due to SSEMs

• Beam loss when SSEMs are IN is quite high
• ⇠0.005% beam loss at each SSEM

• Can cause radiation damage, activation of beamline equipment
• SSEMs upstream of the neutrino target station cannot be used

continuously
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Observed Degradation

• T2K OTR generally working well, but ...
• Gradual decrease in OTR signal size with integrated incident POT
has been observed (left)

• Foil darkening where the beam hits also observed
• Materials properties study of previously used OTR foils ongoing
• Foil darkening also seen for SSEM19 (right)
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WSEM Beam Profile Monitor• Wire Secondary Emission Monitor (WSEM) designed to measure
proton beam profile in the T2K beamline (same design used at
Fermilab)

• Monitor beam profile using twinned 25 µm Ti wires
• Exact same principle as SSEMs but with reduced material in the

beam ! beam loss reduced by factor of 1/10
• C-shape allows monitor to be moved into and out of the beam wile

the beam is running
• Wires mounted at 45� so they can measure X and Y

!
!
!
!
!
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Beam Induced Fluorescence Monitor (BIF)

• Protons hit gas (i.e. N2, Xe) inside
the beam pipe

• Gas molecules are excited by the
interaction with the protons

• Electrons in the gas promoted to
excited (rotational, vibrational,
etc) states

• Gas may or may not be ionized
(electrons ripped o↵)

• When electrons fall to a lower
energy orbit, photons are emitted

• Fluorescence of the gas

• Pattern of fluorescence light should
be proportional to the proton beam
profile that excited the gas
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Beam Induced Fluorescence Monitor Merit
• Measure beam profile by fluorescence induced by proton beam
interactions with gas in the beamline

• Need ⇠1000km of gas @1⇥ 10�3 Pa to equal beam loss from
1 SSEM
! Basically totally non-destructive (in T2K extraction line)

! Can be used to continuously and non-destructively monitor proton
beam profile even at very high beam power !
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T2K Beam Induced Fluorescence Monitor
• Installed various components for full prototype monitor in neutrino
primary beamline in 2019

• Pulsed gas injection system
• 2 systems for optical focusing, transport, light detection

(1 horizontal, 1 vertical)
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Working Prototype BIF Monitor @T2K (!)
• Injected N2 gas into J-PARC neutrino primary beamline at the same
timing as the proton beam

• Installed 2 di↵erent sensor arrays to observe produced BIF light
from proton interactions with injected gas

• Made first observation of BIF light at J-PARC neutrino beamline
last January (!)
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