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Brief Philosophy of EFT
Part 1



Role of scale in physical problems
Some distribution  
of electric charges 

r

Near 
observer

Far 
observer

R

L

Near observer, L~R, needs to know the position of every charge to describe electric field in her proximity  

Far observer, ,  can instead use multipole expansion:r ≫ R V( ⃗r ) =
Q
r

+
⃗d ⋅ ⃗r

r3
+

Qijrirj

r5
+ …

Far observer is able to describe electric field in his vicinity using just a few parameters: 
the total electric charge , the dipole moment , eventually the quadrupole moment , etc…. Q ⃗d Qij

Higher order terms in the multipole expansion are suppressed by powers of the small parameter (R/r). 
 One can truncate the expansion at some order depending on the value of (R/r) and experimental precision

Far observer may discover that he has been using EFT all his life  

On the other hand, far observer can only guess the "fundamental" distributions of the charges, 
as many distinct distributions lead to the same first few moments   

∼ 1/r ∼ R /r2 ∼ R2/r3



Consider a theory of a light particle  
interacting with a heavy particle H

ϕ

At large momentum scales, p2 >> mH2,  
we see propagation of the heavy particle H. 

Long range force acting between light particles ϕ

P(p2) =
1

p2 − m2
H + iϵ

≈

1
p2 + iϵ

p2 ≫ m2
H

−
1

m2
H

p2 ≪ m2
H

Heavy particle H propagator in momentum space:

ℳ ∼
g2

p2 + iϵ ℳ ∼
g2

m2
H

At small momentum scales, p2 << mH2,  
propagation of the heavy particle H 

effectively leads to a contact interaction 
between light particles ϕ

H

ϕ

ϕ

ϕ

ϕ

H
ϕ

ϕ

ϕ

ϕ
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Role of scale in quantum field theory



Figure 5: One-loop Feynman diagrams contributing to the �� ! �� scattering ampli-
tude in the toy model described by the Lagrangian Eq. (2.1) in the limit �1 = 0.
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from which the observable di↵erential cross-section can be calculated. Here �� is the
wave-function renormalization which however vanishes at one loop in the unbox basis,
and MS prescription consists in dropping the 1/✏̄ poles in the amplitude. Demanding
that SEFT

4
is renormalization-scale independent, one obtains the RG equation for the

Wilson coe�cient C4,
dC4
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It is instructive to repeat the same calculation in the box basis. O↵-shell, the 2-to-2
amplitude reads
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Much as for the two point function, the on-shell matrix elements M̃EFT

4
and M

EFT

4
are

di↵erent, and the two have a di↵erent momentum dependence. However, the S-matrix
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Role of scale in quantum field theory

Effective theory approach works beyond tree level
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Figure 5: One-loop Feynman diagrams contributing to the �� ! �� scattering ampli-
tude in the toy model described by the Lagrangian Eq. (2.1) in the limit �1 = 0.
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Much as for the two point function, the on-shell matrix elements M̃EFT

4
and M

EFT

4
are

di↵erent, and the two have a di↵erent momentum dependence. However, the S-matrix
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This works also for higher loops, and with both heavy and light particles in the loops



Effective field  theory

How to build an EFT

Bottom up Top down

Starting with a set of particles 
we build the Lagrangian  

describing all their possible interactions 
obeying a prescribed set of symmetries 
and organised in a consistent expansion 

Starting with a given theory  
(effective or fundamental) 

we integrate out degrees of freedom 
heavier than some prescribed mass scale 



1 GeV

5 GeV

 + u, d, s, c  γ, g, νi, e, μ, τ2 GeV

100 MeV

100 GeV

1 MeV

10 TeV Dragons

SMEFT

UV

WEFT5

WEFT4

ChRT

ChPT

QED

EH
0.01 eV

γ, νi
γ

γ, νi, e

γ, νi, e, μ, π, K

γ, νi, e, μ + hadrons

 + u, d, s, c, b  γ, g, νi, e, μ, τ

 + u, d, s, c, b, t + h  γ, g, W, Z, νi, e, μ, τ



Introducing SMEFT

Part 2



Elementary particles we know today

This set of particles are the propagating degrees of freedom (at least) right above the 
electroweak scale,  that is at 100 GeV - 1 TeV E ∼

graviton



Elementary particles we know today

In these lectures gravity is decoupled and ignored (good assumption in most of  
laboratory experiments). Otherwise the relevant EFT is called GRSMEFT.

graviton



SMEFT
SMEFT is an effective theory for these degrees of freedom:

1. Locality, unitarity, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously 
 broken to SU(3)xU(1) by a VEV of the Higgs field

incorporating certain physical assumptions:

Field SU(3)C SU(2)L U(1)Y Name Spin Dimension
Ga

µ 8 1 0 Gluon 1 1
W k

µ 1 3 0 Weak SU(2) bosons 1 1
Bµ 1 1 0 Hypercharge boson 1 1
Q 3 2 1/6 Quark doublets 1/2 3/2
U c 3̄ 1 -2/3 Up-type anti-quarks 1/2 3/2
Dc 3̄ 1 1/3 Down-type anti-quarks 1/2 3/2
L 1 2 -1/2 Lepton doublets 1/2 3/2
Ec 1 1 1 Charged anti-leptons 1/2 3/2
H 1 2 1/2 Higgs field 0 1

Table 1. Transformation properties of the SM fields under the SM gauge group. We also

display the spin of the associated particle and the canonical dimension of the field. The matter

fields (rows 4-8) come in 3 copies (generations), labeled by the generation index J = 1 . . . 3, where

Q = (q1, q2, q3), U c = (uc
1, u

c
2, u

c
3) ⌘ (uc, cc, tc), Dc = (dc1, d

c
2, d

c
3) ⌘ (dc, sc, bc), L = (l1, l2, l3),
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c
2, e

c
3) ⌘ (ec, µc, ⌧ c). Here qJ and lJ are SU(2) doublets: q1 =

✓
u
d

◆
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✓
c
s

◆
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✓
t
b

◆
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◆
. The generation indices will be often suppressed to reduce the

clutter.

for example, the chiral 4th generation was definitely excluded by the Higgs production
rate measurements at the LHC. Even though, at present, one cannot formally exclude
the existence of non-decoupling new physics, and some wiggle room remains for certain
constructions, it is a very unlikely possiblity in my opinion. Focusing on decoupling new
physics, and thus restricting our scope to SMEFT, seems a very reasonable assumption.

One last comment to close this section: note that assumptions #1-#3 do not restrict
the SMEFT Lagrangian to be renormalizable. There was a time in the history of particle
physics when renormalizability was hailed as a sacred priniciple that every succesful quntum
theory should obey. Now the pendulum has swung in the opposite direction, and we think
that every fundmental QFT description of realitiy corresponds to a non-renormalizable
EFT. Now, in some case that EFT may be well approximated by a renormalizable QFT, as
is the case for physics at the electroweak scale. We think of this as an accident due to a large
separation between the electroweak scale and the scale suppressing the non-renorrmalizable
interactions. However we expect that these non-renormalizable interactions are present in
the Lagrangian, and will become apparent when enough experimental precision is achieved.

3 Constructing SMEFT

This section reviews a systematic way to construct the SMEFT Lagrangian. The fields
corresponding to the SM particles and their representations under the gauge symmetry are
summarized in Table 1. Using these fields as building blocks we will write down the most
general Lagrangian consistent with the assumptions spelled out in Section 2.

– 11 –



Dimensional analysis

Using the unit system where . Then all objects can be assigned mass dimensionc = ℏ = 1

[m] = [E] = mass1 [x] = [t] = mass−1

S = ∫ d4xℒ = ∫ d4x{ 1
2

∂μϕ∂μϕ + iψ̄σ̄μ∂μψ −
1
2

[∂μAν − ∂νAμ]∂μAν}
Canonical dimension of fields follow from canonically normalized action:

[∂μ] ≡ [ ∂
∂xμ ] = mass1

[ϕ] = mass1

[ψ] = mass3/2

[A] = mass1

Action is dimensional  
(because path integral contains  )eiS/ℏ

These rules allows one to determine dimensions of any interaction term, e.g.

ℒ ⊃ λ |H |4 + CH |H |6 + Cψ(ψ ψ)(ψ̄ ψ̄) + … [λ] = mass0 [CH] = mass−2 [Cψ] = mass−2



Power counting
1. Locality, unitarity, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions

In EFT, any interaction allowed by symmetries and general principles is present in the Lagrangian 

For practical reasons, we need an organizing principle to decide a-priori 
 which interactions are more important, and which are less important

For example, SMEFT Lagrangian contains  as well as  Higgs self-interactions|H |4 |H |12

Which is more important? 

The answer is given by power counting



SMEFT power counting

ℒSMEFT = ℒD=2 + ℒD=3 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …
We can organize the SMEFT Lagrangian  in a dimensional expansion: 

1. Locality, unitarity, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions

 Since Lagrangian has mass dimension , by dimensional analysis the couplings 
(Wilson coefficients) of interactions in  have  mass dimension   

[ℒ] = 4
ℒD [CD] = 4 − D

Each  is a linear combination of SU(3)xSU(2)xU(1) invariant interaction terms (operators) 
where  is the sum of canonical dimensions of all the fields entering the interaction

ℒD
D

Standard SMEFT power counting:  where  ,   

and  is identified with the mass scale of the UV completion of the SMEFT,

CD ∼
cD

ΛD−4
cD ∼ 1

Λ

In the spirit of EFT, each  should include a complete and non-redundant set of interactionsℒD



 SM Lagrangian
Higher-dimensional 

SU(3)C x SU(2)L x U(1)Y invariant  
interactions added to the SM

ℒSMEFT = ℒD=2 + ℒD=3 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

At sufficiently high energies, such that we can ignore particle masses,  
amplitudes for physical processes take the form

ℳSMEFT = ℳSM + CD=5E + CD=6E2 + CD=7E3 + CD=8E4 + …

∼ ℳSM +
c5E
Λ

+
c6E2

Λ2
+

c7E3

Λ3
+

c8E4

Λ4
+ …

Standard SMEFT power counting sets up the rules for expanding  
the amplitudes and observables  in powers of the new physics scale .  

For  expansion can be truncated at some , depending on the desired precision 
Λ

E ≪ Λ D

SMEFT power counting



Experiment: μH ∼ 100 GeV

ℒSMEFT = ℒD=2 + ℒD=3 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

SMEFT at dimension 2

ℒD=2 = μ2
HH†H

Unsolved mystery why , 
which is called the hierarchy problem   

μ2
H ≪ Λ2

Only a single D=2 operator  can be build from the SM fields:

Philosophy of EFT: μH ∼ Λ ≳ 1 TeV

From the point of view of EFT, the hierarchy problem is a breakdown of dimensional analysis



ℒD=3 = 0

ℒSMEFT = ℒD=2 + ℒD=3 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

SMEFT at dimension 3

Simply, no gauge invariant operators made of SM fields 
exist at canonical dimension D=3

The absence of D=3 operators is a feature of SMEFT, but not a law of nature.  
E.g. in SMEFT, where one also has singlet (right-handed) neutrino, one can write down  ν

ℒνSMEFT
D=3 =

1
2

νcMννc + h . c .

These are mass terms of the singlet neutrinos 



Strictly speaking,  has not been observed directly. Its value is known within SM hypothesis, but not within SMEFT, without additional assumptions.  
Observation of double Higgs production (receiving contribution from cubic Higgs coupling) will be a direct proof that  is there in the Lagrangian. 

λ
λ

ℒSMEFT = ℒD=2 + ℒD=3 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

SMEFT at dimension 4

Experiment: all these interactions at D=4 above have been observed, except for  θ̃

Note that  has no physical consequences,  while  can be eliminated by chiral rotation θBBμνB̃μν θWWk
μνW̃k

μν

Dμ f = ∂μ f + igsGa
μTaf + igLWi

μ
σi

2
f + igY BμYf

Va
μν = ∂μVa

ν − ∂νVa
μ − g f abcVb

μVc
ν

G̃a
μν ≡

1
2

ϵμναβGαβ a

H̃a = ϵabH*b

ℒD=4 = −
1
4 ∑

V∈B,Wi,Ga

VμνVμν + ∑
f∈Q,L

if̄σ̄μDμ f + ∑
f∈U,D,E

if cσμDμ f̄ c

−(UcYuH̃†Q + DcYdH†Q + EcYeH†L + h . c . ) + DμH†DμH − λ(H†H)2

+θ̃Ga
μνG̃a

μν,

D=4 is special because it doesn't contain an explicit scale (marginal interactions) 

Q =
q1
q2
q3

=

(u
d)

(c
s)

( t
b)

L =
l1
l2
l3

=

(νe
e )

(νμ
μ )

(ντ
τ )

Uc =
uc

cc

tc

Dc =
dc

sc

bc

Ec =
ec

μc

τc



Note on fermion conventions

I am using the 2-component spinor formalism

A Dirac fermion is described by a pair of spinor fields   with the kinetic and mass terms   f and f̄ c

ℒ = if̄σ̄μDμ f + if cσμDμ f̄ c − mf c f − mf̄f̄ c σμ = (1,σ)
σ̄μ = (1, − σ)

f̄ ≡ f*

To translate to 4-component Dirac notation use 

F = ( f
f̄ c), F̄ = (f c f̄), γμ = ( 0 σμ

σ̄μ 0 )
For example 

f̄σ̄μ∂μ f = F̄Lγμ∂μFL

f cσμ∂μ f̄ c = F̄Rγμ∂μFR

f c f = F̄RFL

f̄ f̄ c = F̄LFR

F̄ ≡ F†γ0

See the spinor bible 
[arXiv:0812.1594]   
for more details



• At dimension 5, the only gauge-invariant operators one can construct are the so-
called Weinberg operators, which break the lepton number


• After electroweak symmetry breaking they give rise to mass terms for the SM 
(left-handed) neutrinos with the mass matrix . In the SMEFT scenario, 
neutrinos are purely Majorana. 


• Neutrino oscillation experiments strongly suggest that these operators are present  
(unless new degrees of freedom exist at low energy scale , see later)

M = − v2C

ℒD=5 = (LH)C(LH) + h . c . →
1
2 ∑

J,K=e,μ,τ

v2CJK(νJνK) + h . c .

SMEFT at dimension-5

H → (
0

v/ 2)

This is a huge success of the SMEFT paradigm:  
corrections to the SM Lagrangian predicted at the next order in the EFT expansion, are 

indeed observed in experiment!

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

Weinberg (1979) 
 Phys. Rev. Lett. 43, 1566 



SMEFT at dimension-5

ℒSMEFT ⊃ −
1
2

(νMν) + h . c .
Neutrino masses or most likely in the 0.01 eV - 0.1 eV ballpark  
 (though the lightest neutrino may even be massless)

It follows that the dimension-5 Wilson coefficient is of order  GeV C ∼
1
Λ

with Λ ∼ 1015

M = − v2C

One one hand, that is perfect, because it suggests that  
the basic SMEFT assumption, ,  is indeed satisfiedΛ ≫ v

SMEFT paradigm points to an existence of a large scale in physics,  
independent of the Planck scale ! 



Digression on nu-SMEFT



nu-SMEFT

nu-SMEFT is an effective theory for these degrees of freedom:

1. Locality, unitarity, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions and spontaneously 
 broken to SU(3)xU(1) by a VEV of the Higgs field

incorporating certain physical assumptions:

Field SU(3)C SU(2)L U(1)Y Name Spin Dimension
Ga

µ 8 1 0 Gluon 1 1
W k

µ 1 3 0 Weak SU(2) bosons 1 1
Bµ 1 1 0 Hypercharge boson 1 1
Q 3 2 1/6 Quark doublets 1/2 3/2
U c 3̄ 1 -2/3 Up-type anti-quarks 1/2 3/2
Dc 3̄ 1 1/3 Down-type anti-quarks 1/2 3/2
L 1 2 -1/2 Lepton doublets 1/2 3/2
Ec 1 1 1 Charged anti-leptons 1/2 3/2
H 1 2 1/2 Higgs field 0 1

Table 1. Transformation properties of the SM fields under the SM gauge group. We also

display the spin of the associated particle and the canonical dimension of the field. The matter

fields (rows 4-8) come in 3 copies (generations), labeled by the generation index J = 1 . . . 3, where

Q = (q1, q2, q3), U c = (uc
1, u

c
2, u

c
3) ⌘ (uc, cc, tc), Dc = (dc1, d

c
2, d

c
3) ⌘ (dc, sc, bc), L = (l1, l2, l3),

Ec = (ec1, e
c
2, e

c
3) ⌘ (ec, µc, ⌧ c). Here qJ and lJ are SU(2) doublets: q1 =

✓
u
d

◆
, q2 =

✓
c
s

◆
, q3 =

✓
t
b

◆
,

l1 =

✓
⌫e
e

◆
, l2 =

✓
⌫µ
µ

◆
, l3 =

✓
⌫⌧
⌧

◆
. The generation indices will be often suppressed to reduce the

clutter.

for example, the chiral 4th generation was definitely excluded by the Higgs production
rate measurements at the LHC. Even though, at present, one cannot formally exclude
the existence of non-decoupling new physics, and some wiggle room remains for certain
constructions, it is a very unlikely possiblity in my opinion. Focusing on decoupling new
physics, and thus restricting our scope to SMEFT, seems a very reasonable assumption.

One last comment to close this section: note that assumptions #1-#3 do not restrict
the SMEFT Lagrangian to be renormalizable. There was a time in the history of particle
physics when renormalizability was hailed as a sacred priniciple that every succesful quntum
theory should obey. Now the pendulum has swung in the opposite direction, and we think
that every fundmental QFT description of realitiy corresponds to a non-renormalizable
EFT. Now, in some case that EFT may be well approximated by a renormalizable QFT, as
is the case for physics at the electroweak scale. We think of this as an accident due to a large
separation between the electroweak scale and the scale suppressing the non-renorrmalizable
interactions. However we expect that these non-renormalizable interactions are present in
the Lagrangian, and will become apparent when enough experimental precision is achieved.

3 Constructing SMEFT

This section reviews a systematic way to construct the SMEFT Lagrangian. The fields
corresponding to the SM particles and their representations under the gauge symmetry are
summarized in Table 1. Using these fields as building blocks we will write down the most
general Lagrangian consistent with the assumptions spelled out in Section 2.
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νc 1 1 0 Singlet neutrinos 1/2 3/2



SMEFT at dimension 3

In the presence of  singlet (right-handed) neutrinos, one can write down their mass term 
at D=3:   

ℒνSMEFT
D=3 =

1
2

νcMννc + h . c .

Here  is a 3x3 symmetric matrix containing a new mass scale.  
Power counting suggests ,  but if that is the case, then we can integrate out 

the singlet neutrinos and return to SMEFT.  
nu-sMEFT is worth considering only assuming , creating another violation of  

natural EFT power counting

Mν
Mν ∼ Λ ≫ v

Mν ≤ v

ℒνSMEFT = ℒνSMEFT
D=2 + ℒνSMEFT

D=3 + ℒνSMEFT
D=4 + ℒνSMEFT

D=5 + ℒνSMEFT
D=6 + …



ℒνSMEFT = ℒνSMEFT
D=2 + ℒνSMEFT

D=3 + ℒνSMEFT
D=4 + ℒνSMEFT

D=5 + ℒνSMEFT
D=6 + …

nu-SMEFT at dimension 4

ℒνSMEFT
D=4 = −

1
4 ∑

V∈B,Wi,Ga

VμνVμν + ∑
f∈Q,L

if̄σ̄μDμ f + ∑
f∈U,D,E

if cσμDμ f̄ c

−(UcYuH̃†Q + DcYdH†Q + EcYeH†L + νcYνH̃†L + h . c . )
+DμH†DμH − λ(H†H)2 + θ̃Ga

μνG̃a
μν,

D=4 is special because it doesn't contain an explicit scale (marginal interactions) 

In nu-SMEFT at D=4 there are in addition Yukawa interactions with right-handed neutrinos 
Together with the D=3 term, it gives neutrino masses  

ℒνSMEFT ⊃
1
2

νcMννc −
v

2
νcYνν + h . c .

As a result, neutrinos are generically mixed Majorana-Dirac 

However, in the nu-SMEFT scenario the smallness of the neutrino masses does not have a 
natural explanation, and it only adds to mysteries of the SM  (why are  and  small) ?Mν Yν



nu-SMEFT at dimension 5

There are qualitatively new effects at D=5 in nu-SMEFT...

ℒνSMEFT
D=5 ⊃ (νcCNNHνc)H†H + (νcCNNBσμννc)Bμν

Another contribution  
to neutrino masses 

Might also affect 
Higgs decays

Magnetic and electric Majorana  
dipole moment of neutrinos 

Leads also to neutrino 
radiative decay

(νc
Jσμννc

K)Bμν = (νc
Kσνμνc

J)Bμν = − (νc
Kσμννc

J)Bμν

Therefore Majorana dipole moment involves necessarily 2 different neutrino flavours 

The more usual Dirac dipole moment arises only at D=6 in nu-SMEFT: 

ℒνSMEFT
D=6 ⊃ (νcCνBH̃†L)Bμν + (νcCνBH̃†σkL)Wk

μν + h . c .
and in this case the dipole moments can be flavor diagonal



Back to SMEFT



Scales in SMEFT

However,  GeV leads to a psychological problemΛ ∼ 1015

If this is really the correct estimate, then we will never see any other effects  
of higher-dimensional operators, except possibly of the baryon-number violating ones :/ 

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

If   then naive SMEFT counting suggest  , , 

 and so on

ℒD=5 ∼
1
Λ

ℒD=6 ∼
1

Λ2
ℒD=7 ∼

1
Λ3

ℒSMEFT ⊃ −
1
2

(νMν) + h . c . M = − v2C



?

Career opportunities



SMEFT at dimension-5

Dimension-5 interactions are special because they violate lepton number L.  
More generally, all odd-dimension SMEFT operators violate B-L 

If we assume that the mass scale of new particles with B-L-violating interactions  is ,  
and there is also B-L-conserving new physics at the scale   , then the estimate is  

ΛL
Λ ≪ ΛL

Alternatively, it is possible (and likely) that there is more than one mass scale of new physics

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

However, this conclusion is not set in stone 
It  is possible that  the true new physics scale is not far from TeV,  

but its coupling to the lepton sector is very small 

 ,   , , ,  and so onℒD=5 ∼
1

ΛL
ℒD=6 ∼

1
Λ2

ℒD=7 ∼
1

Λ3
L

ℒD=8 ∼
1

Λ4

ℒSMEFT ⊃ −
1
2

(νMν) + h . c . M = − v2C

If   then naive SMEFT counting suggest 

 , , ...

ℒD=5 ∼
1
Λ
ℒD=6 ∼

1
Λ2

ℒD=7 ∼
1

Λ3



SMEFT at dimension-6

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

At dimension-6 all hell breaks loose
Grządkowski et al 

arXiv:1008.4884 

ℒD=6 = CH(H†H )3 + CH□(H†H ) □ (H†H ) + CHD |H†DμH |2

+CHWBH†σkH Wk
μνBμν + CHGH†H Ga

μνGa
μν + CHWH†H Wk

μνWk
μν + CHBH†H BμνBμν

++CWϵklmWk
μνWl

νρWm
ρμ + CG f abcGa

μνGb
νρGc

ρμ

+CH G̃ H†H G̃ a
μνGa

μν + CHW̃ H†H W̃k
μνWk

μν + CH B̃ H†H B̃ μνBμν + CHW̃BH†σkH W̃k
μνBμν

+CW̃ ϵklmW̃k
μνWl

νρWm
ρμ + CG̃ f abc G̃ a

μνGb
νρGc

ρμ

+H†H(L̄HCeHĒc) + H†H(Q̄H̃CuHŪc) + H†H(Q̄HCdHD̄c)

+iH†DμH(L̄C(1)
Hl σ̄μL) + iH†σkDμH(L̄C(3)

Hl σ̄μσkL) + iH†DμH(EcCHeσμĒc)

+iH†DμH(Q̄C(1)
Hqσ̄μQ) + iH†σkDμH(Q̄C(3)

Hqσ̄μσkQ) + iH†DμH(UcCHuσμŪc)

+iH†DμH(DcCHdσμD̄c) + {iH̃†DμH(UcCHudσμD̄c)

+(Q̄σkH̃CuWσ̄μνŪc)Wk
μν + (Q̄H̃CuBσ̄μνŪc)Bμν + (Q̄H̃CuGTaσ̄μνŪc)Ga

μν

+(Q̄σkHCdWσ̄μνD̄c)Wk
μν + (Q̄HCdBσ̄μνD̄c)Bμν + (Q̄HCdGTaσ̄μνD̄c)Ga

μν

+(L̄σkHCeWσ̄μνĒc)Wk
μν + (L̄HCeBσ̄μνĒc)Bμν + h . c . }+ ℒ4−fermion

D=6



|H |6 |H |2 Ga
μνGa

μν

|H |2 Wa
μνWa

μν| H |2 W a
μν W̃ a

μν
|H |2 Ga

μν G̃ a
μν | H |2 Bμ ν Bμ ν

| H |2 Bμ ν B̃ μ ν
Ga

μνGa
νρ G̃ a

ρμ



OH = (H†H)3

OH□ = (H†H) □ (H†H)

OHD = |H†DμH |2

OHG = H†H Ga
μνGa

μν OH G̃ = H†H Ga
μν G̃ a

μν

OHW = H†H Wk
μνWk

μν OHW̃ = H†H Wk
μνW̃k

μν

OHB = H†H BμνBμν OH B̃ = H†H Bμν B̃ μν

OHWB = H†σkH Wk
μνBμν OHW B̃ = H†σkH Wk

μν B̃ μν

OW = ϵklmWk
μνWl

νρWm
ρμ OW̃ = ϵklmWk

μνWl
νρW̃m

ρμ

OG = f abcGa
μνGb

νρGc
ρμ OG̃ = f abcGa

μνGb
νρ G̃ c

ρμ

SMEFT at dimension-6
Bosonic operators ℒSMEFT ⊃ ∑

X

CXOX

These are mostly relevant for Higgs physics  and certain electroweak precision observables. 
The CP odd ones, affect important  CP observables via loop effects,  such as e.g. EDMs



SMEFT at dimension-6

OeH = H†H(L̄HĒc)
OuH = H†H(Q̄H̃Ūc)
OdH = H†H(Q̄HD̄c)

Yukawa-like operators 

ℒSMEFT ⊃
3

∑
I,J=1

[OfH]IJ[CfH]IJ + h . c .

These affect single Higgs boson couplings  
to SM fermions. Bounds depends on the flavor 

but typically don't exceed |C | ≲
1

(1 TeV)2



SMEFT at dimension-6

O(1)
Hl = iH†DμH(L̄σ̄μL)

O(3)
Hl = iH†σkDμH(L̄σ̄μσkL)

OHe = iH†DμH(EcσμĒc)

O(1)
Hq = iH†DμH(Q̄σ̄μQ)

O(3)
Hq = iH†σkDμH(Q̄σ̄μσkQ)

OHu = iH†DμH(UcσμŪc)

OHd = iH†DμH(DcσμD̄c)

OHud = iH̃†DμH(UcσμD̄c)

These affect electroweak precision observables  
(W boson mass, Z branching fractions),  

which are measured at per-mille level at LEP 

Bounds of order  |C | ≲
1

(10 TeV)2

Vertex-like operators

Induces W boson couplings to right-handed quarks 
and this way it may affect various neutrino experiments

Affects W boson couplings to left-handed quarks 
and this way it may affect various neutrino experiments



These affect anomalous magnetic and electric 
moments of SM particles at tree level 

Bounds depend on flavor and can be very strong,  
especially for the first generation

SMEFT at dimension-6

The next class of dimension-6 operators we discuss are Yukawa-like interactions:

L
Yukawa
D=6 =H†H(L̄HCeHĒc) +H†H(Q̄H̃CuH Ū c) +H†H(Q̄HCdHD̄c) + h.c. (3.12)

Here, each CfH is a 3 ⇥ 3 complex matrix in the generation space, thus each comes with
18 free parameters, which makes 54 parameters overall. These operators contribute to
the fermion masses, but that is unobservable because it merely renormalizes the unknown
Yukawa matrices in Eq. (3.7). The observables effect is the modification of the Higgs
boson Yukawa couplings to the fermions. In the SM, the Yukawa coupling is not a free
parameter but it is uniquely fixed by the fermion’s mass. In the presence of the operator is
Eq. (3.12) that relation no longer holds, and the Higgs boson couplings to fermions become
free parameters independent of fermion masses. Moreover, a qualitatively new effect of
flavor violation in Higgs interactions may appear. That is to say, the Higgs boson can
couple to two fermions from different generations, e.g. L � h⌧̄ µ̄c, which does not occur in
the SM.

Next we have vertex-like operators:

L
vertex
D=6 =iH† !D µH(L̄C(1)

Hl
�̄µL) + iH†�k

 !
D µH(L̄C(3)

Hl
�̄µ�kL) + iH† !D µH(EcCHe�

µĒc)

+iH† !D µH(Q̄C(1)
Hq

�̄µQ) + iH†�k
 !
D µH(Q̄C(3)

Hq
�̄µ�kQ) + iH† !D µH(U cCHu�

µŪ c)

+iH† !D µH(DcCHd�
µD̄c) +

⇥
iH̃†DµH(U cCHud�

µD̄c) + h.c.], (3.13)

where H† !D µH ⌘ H†DµH�DµH†H. As before, the Wilson coefficient CHf are matrices in
the generation space, but now only CHud is a general complex matrix, while the remaining
ones are Hermitian matrices (thus with 9 free parameters each). This adds up to 81 free
parameters in Eq. (3.13). These operators contribute to the W and Z bosons interactions
with fermions, which have been precisely measured in the LEP, Tevatron, and LHC colliders.
Several qualitatively new effects are introduced by Eq. (3.13). One is the W boson couplings
to right-handed quarks, e.g. L � Wµ(tc�µb̄c), whereas in the SM W couples only to left-
handed quarks. Another is tree-level flavor-changing neutral currents, that is Z boson
couplings to quarks or leptons of different generations, e.g. L � Zµ(b̄�̄µs).

Next, we have dipole-like operators

L
dipole
D=6 =(Q̄�kH̃CuW �̄µ⌫Ū c)W k

µ⌫ + (Q̄H̃CuB�̄
µ⌫Ū c)Bµ⌫ + (Q̄H̃CuGT

a�̄µ⌫Ū c)Ga

µ⌫

+(Q̄�kHCdW �̄µ⌫D̄c)W k

µ⌫ + (Q̄HCdB�̄
µ⌫D̄c)Bµ⌫ + (Q̄HCdGT

a�̄µ⌫D̄c)Ga

µ⌫

+(L̄�kHCeW �̄µ⌫Ēc)W k

µ⌫ + (L̄HCeB�̄
µ⌫Ēc)Bµ⌫ + h.c. (3.14)

Given that CfV are 3⇥3 complex matrices in the generation space, the above introduces 144
free parameters. An important effect of the operators in Eq. (3.13) is their contribution to
the anomalous magnetic dipole moment of fundamental particles. In particular, the Wilson
coefficients [CeW ]22 and [CeB]22 contribute to the muon g� 2 which, at the time of writing,
may or may not deviate from the SM prediction. The imaginary parts of these Wilson
coefficients contribute to electric dipole moments. Finally, the operators in Eq. (3.13) in
can mediate certain processes that are forbidden in the SM, e.g. the µ! e� decay.

– 18 –σμν =
i
2 [σμσ̄ν − σνσ̄μ] σ̄μν =

i
2 [σ̄μσν − σ̄νσμ]



SMEFT at dimension-6

These affect a wide range of physics, including neutrino physics.  
Bounds can be very strong, especially for baryon-number violating operators 

and for certain flavor- or lepton-flavor-violating operators 

ℒ4−fermion
D=6 = (L̄σ̄μL)Cll(L̄σ̄μL) + (EcσμĒc)Cee(EcσμĒc) + (L̄σ̄μL)Cle(EcσμĒc)

+(L̄σ̄μL)C(1)
lq (Q̄σ̄μQ) + (L̄σ̄μσkL)C(3)

lq (Q̄σ̄μσkQ)

+(EcσμĒc)Ceu(UcσμŪc) + (EcσμĒc)Ced(DcσμD̄c)

+(L̄σ̄μL)Clu(UcσμŪc) + (L̄σ̄μL)Cld(DcσμD̄c) + (EcσμĒc)Ceq(Qσ̄μQ)

+{(L̄Ēc)Cledq(DcQ) + ϵkl(L̄kĒc)C(1)
lequ(Q̄

lŪc) + ϵkl(L̄kσ̄μνĒc)C(3)
lequ(Q̄

lσ̄μνŪc) + h . c . }
+(Q̄σ̄μQ)C(1)

qq (Q̄σ̄μQ) + (Q̄σ̄μσkQ)C(3)
qq (Q̄σ̄μσkQ)

+(UcσμŪc)Cuu(UcσμŪc) + (DcσμD̄c)Cdd(DcσμD̄c)

+(UcσμŪc)C(1)
ud (DcσμD̄c) + (UcσμTaŪc)C(8)

ud (DcσμTaD̄c)

+(QcσμQ̄c)C(1)
qu (UcσμŪc) + (QcσμTaQ̄c)C(8)

qu (UcσμTaŪc)]

+(QcσμQ̄c)C(1)
qd (DcσμD̄c) + (QcσμTaQ̄c)C(8)

qd (DcσμTaD̄c)

+{ϵkl(Q̄kŪc)C(1)
quqd(Q̄lD̄c) + ϵkl(Q̄kTaŪc)C(1)

quqd(Q̄lTaD̄c) + h . c . }
+{(DcUc)Cduq(Q̄L̄) + (QQ)Cqqu(ŪcĒc) + (QQ)Cqqq(QL) + (DcUc)Cduu(UcEc) + h . c . }.

4-fermion operators 



SMEFT up to dimension-6
SMEFT Lagrangian up to dimension-6 provides a convenient framework for a bulk of 

precision physics happening today.  
In particular, it allows one to quantify the strength of different observables



SMEFT up to dimension-6
SMEFT Lagrangian up to dimension-6 provides a convenient framework for a bulk of 

precision physics happening today. 
Moreover, it leads to correlations between different observables, e.g. due to  
symmetry relating charged and neutral currents, and due to the interplay of tree- and 

loop-level contributions to observables

SU(2)W

Importance of global fits collecting results 
 from different types of experiments !



SMEFT at higher dimensions

Exponential growth of the number of operators with the canonical dimension D

Henning et al 
arXiv:1512.03433 
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Figure 1. Growth of the number of independent operators in the SM EFT up to mass dimension
15. Points joined by the lower solid line are for one fermion generation; those joined by the upper
solid line are for three generations. Dashed lines are to guide the eye to the growth of the even and
odd mass dimension operators in both cases.

information (i.e. setting all spurions equal to unity), but still retaining Nf dependence:

# Dim 13 = �109Nf +
159296

15
N2

f
+

32063

90
N3

f
+

5140756

45
N4

f
+

78253

72
N5

f
+

42846881

360
N6

f
+

68723

360
N7

f

+
4311047

360
N8

f

# Dim 14 = 40715� 2Nf +
105860297

180
N2

f
+

89759

18
N3

f
+

1513774187

720
N4

f
+

63971

72
N5

f
+

299553293

180
N6

f

�
117979

72
N7

f
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51562231

240
N8

f

# Dim 15 = �2427Nf +
21647887

180
N2

f
�

114619

20
N3

f
+

387130705

216
N4

f
�

10026269

1440
N5

f
+

456200951

160
N6

f

�
3717991

720
N7

f
+

103741331

144
N8

f
�

534941

1440
N9

f
+

9163865

864
N10

f

(which exhibit some rather large prime numbers!). The number of independent operators
evaluated for Nf = 1 and Nf = 3 up to dimension 15 are plotted in Fig. 1. We see the
growth is exponential, which is to be expected on general grounds [43].

5 Discussion

The method we have outlined in this paper can be extended trivially to determining the
content and number of higher dimension operators for any four-dimensional relativistic
gauge theory with scalar and fermionic matter. The master equation is eq. (3.16), which
needs to be modified from the SM to the theory of interest. The pieces of eq. (3.16)
which are SM specific are the gauge groups (and as such the Haar measures that need to be

– 17 –

Nf = 1

Nf = 3

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

For complex operators

complex conjugates counted


as separate operators



SMEFT at higher dimensions

SMEFT at dimension-6: Grzadkowski et al 
arXiv: 1008.4884 

SMEFT at dimension-5: Weinberg (1979) 
 Phys. Rev. Lett. 43, 1566 

SMEFT at dimension-7: Lehman 
arXiv: 1410.4193

SMEFT at dimension-8: Li et al 
arXiv: 2005.00008

SMEFT at dimension-9: Li et al 
arXiv: 2012.09188 

Code to generate a basis at arbitrary dimension in SMEFT: Li et al 
arXiv:2201.04639 

Harlander, Kempkens, Schaaf 
arXiv: 2305.06832SMEFT at dimension-10,11,12: 



Beyond dimension-6

Moreover, a qualitatively new phenomenon may arise at higher dimensions  

At tree level, light-by-light scattering  
receives contribution from dimension-8,  

which in some situations may with  
lower order loop contributions 

ℒD=8 ⊃ (BμνBμν)2 + …

Neutron-antineutron oscillations 
arise at dimension-9 ℒD=9 ⊃ ϵabcϵdef(d̄ad̄d)(qbqe)(qcqf ) + …

In all such cases however, you need to argue validity of your EFT 
and  why you don’t expect  any larger effects of new physics  

from operators of lower dimensions

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …
You need to be aware of the existence of higher-dimensional operators,  

whenever you need to argue validity of the EFT description

ℒD=7 ⊃ (LH)σμν(LH)Bμν + …Electric and magnetic Majorana  
dipole moments of  left-handed  
neutrinos arise at dimension-7 



Beyond dimension-6

Moreover, a qualitatively new phenomenon may arise at higher dimensions  

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …
You need to be aware of the existence of higher-dimensional operators,  

whenever you need to argue validity of the EFT description

If experiment pinpoints a coefficient of some operators of dimension-6, 
then subleading dimension-8 operators will provide precious information 

C6 ∼
g2

*

M2
C8 ∼

g2
*

M4
Only determines 

coupling over mass scala 
of new physics

May allow disentangle  
coupling and mass



Some applications  
in neutrino physics

Part 3



Neutrino oscillations in QFT

ℳ(ST → S′ eαT′ eβ) =
3

∑
k=1

ℳ(S → S′ eανk)ℳ(νkT → Teβ)
q2 − m2

k + iϵ
≡

3

∑
k=1

ℳP
αkℳD

βk

q2 − m2
k + iϵ

Process dominated by intermediate neutrinos close to mass shell,  
where amplitudes factorize into production and detection parts

Oscillations due to interference between different neutrino mass eigenstates, 
possible thanks to momentum spread of source and target particles

45

S Tν ν

σx σyL

S’
T’

eα
eβ

⃗q



Neutrino oscillations in QFT

Observable 
rate

Geometric 
factor

Oscillation 
phase

Production 
phase space 

(without integration 
over neutrino energy)

Detection 
phase space

L ≫ σx,y

Eν ≫ |m2
k − m2

l |σi

Eν ≫ mk

46

S Tν ν

σx σyL

S’
T’

eα
eβ

Masses of 
source and 

target atoms AA, Gonzalez-Alonso, Tabrizi 
[arXiv:1910.02971] 

dRαβ

dEν
=

NSNT

32πL2mSmT

3

∑
k,l=1

exp (−i
L(m2

k − m2
l )

2Eν )∫ dΠ′ PℳP
αkℳ̄

P
αl ∫ dΠDℳD

βkℳ̄
D
βl

R =
dN
dt



Neutrino oscillations in QFT

dRαβ

dEν
=

NSNT

32πL2mSmT

3

∑
k,l=1

exp (−i
L(m2

k − m2
l )

2Eν )∫ dΠ′ PℳP
αkℳ̄

P
αl ∫ dΠDℳD

βkℳ̄
D
βl

47

The rate above is already an observable in neutrino experiments, but to more easily  
compare to the commonly used language we can also define oscillation probability

Pαβ =
Rαβ

Φασβ

Neutrino flux  
at the source

Neutrino cross section 
at the target

dPαβ

dEν
=

∑3
k,l=1 exp (−i

L(m2
k − m2

l )
2Eν ) ∫ dΠ′ PℳP

αkℳ̄P
αl ∫ dΠDℳD

βkℳ̄D
βl

∑3
k,l=1 ∫ dΠ′ P |ℳP

αk |2 ∫ dΠD |ℳD
βl |

2

At this point problem reduced to calculating Feynman diagrams and integrating over phase space  



EFT in reactor experiments: Detection  
 

Detection Through IBD Process: 
 
 
 
Neutrino energy: 
 
 
 
 
Starting from the non-relativistic effective Lagrangian: 
 
 

depend on neutrino energy        suppressed 

3/6/19 Zahra Tabrizi, USP 23 

48

One phenomenological application:  
electron antineutrino survival probability in reactor experiments

[arXiv:1901.04553]  
with Martin Gonzalez-Alonso and Zahra Tabrizi   



Reactor neutrino oscillations in EFT

Pν̄e→ν̄e
= 1 − sin2 ( Δm2

31L
4Eν ) sin2 (2θ̃13 − αD

me

Eν − Δ
− αP

me

fT(Eν) )
+sin ( Δm2

31L
2Eν ) sin(2θ̃13)(γR + βD

me

Eν − Δ
− βP

me

fT(Eν) ) + 𝒪(ϵ2
X) + 𝒪(Δm2

21)

Pν̄e→ν̄e
=

∑3
k,l=1 exp (−i

L(m2
k − m2

l )
2Eν ) ∫ dΠ′ PℳP

k ℳ̄P
l ∫ dΠDℳD

k ℳ̄D
l

∫ dΠ′ P ∑3
k=1 |ℳP

k |2 ∫ dΠD ∑3
l=1 |ℳD

l |2

Short-baseline oscillations 
of electron antineutrinos  

produced in reactors
Relevant for Daya Bay,  
RENO, Double Chooz

⇒ Δm2
21 ≈ 0



Reactor neutrino oscillations in WEFT

Usual CP-conserving oscillation pattern (remains in SM limit)

CP-violating oscillations (vanishes in SM limit)

Pν̄e→ν̄e
= 1 − sin2 ( Δm2

31L
4Eν ) sin2 (2θ̃13 − αD

me

Eν − Δ
− αP

me

fT(Eν) )
+sin ( Δm2

31L
2Eν ) sin(2θ̃13)(γR + βD

me

Eν − Δ
− βP

me

fT(Eν) ) + 𝒪(ϵ2
X) + 𝒪(Δm2

21)



Reactor neutrino oscillations in WEFT

[X] ≡ eiδCP (s23[ϵX]eμ + c23[ϵX]eτ)

Standard Θ13 mixing angle replaced by effective angle:

θ̃13 = θ13 + Re[L] −
3g2

A

3g2
A + 1

Re[R]

Original PMNS 
mixing angle

ℒWEFT ⊃ −
2Vud

v2 [[1+ϵL]eβ
(ēσ̄μνβ)(ūσ̄μd) + [ϵR]eβ

(ēσ̄μνβ)(ucσμd̄c) + …] + h . c .
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fT(Eν) ) + 𝒪(ϵ2
X) + 𝒪(Δm2

21)

gA ≈ 1.25



Reactor neutrino oscillations in WEFT

γR = −
2

3g2
A + 1

Im[eiδCP (s23[ϵR]eμ + c23[ϵR]eτ)]

Pν̄e→ν̄e
= 1 − sin2 ( Δm2

31L
4Eν ) sin2 (2θ̃13 − αD

me

Eν − Δ
− αP

me

fT(Eν) )
+sin ( Δm2

31L
2Eν ) sin(2θ̃13)(γR + βD

me

Eν − Δ
− βP

me

fT(Eν) ) + 𝒪(ϵ2
X) + 𝒪(Δm2

21)

Reactor neutrino oscillations are sensitive at linear level   
to flavor-off-diagonal WEFT Wilson coefficients εR 

ℒWEFT ⊃ −
2Vud

v2 [[1+ϵL]eβ
(ēσ̄μνβ)(ūσ̄μd) + [ϵR]eβ

(ēσ̄μνβ)(ucσμd̄c) + …] + h . c .



Reactor neutrino oscillations in WEFT
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Reactor neutrino oscillations in WEFT

Pν̄e→ν̄e
= 1 − sin2 ( Δm2

31L
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The parameters  correspond to scalar and tensor 4-fermion interactions  
involving 1st generation quarks and leptons
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Figure 3: Allowed regions in the (sin2 2✓̃13 � Re [T ]) (first row) and (sin2 2✓̃13 � Im [T ]) plane (second row) for
the combined data of the Daya Bay and RENO experiments. The 1-, 2-, and 3-� regions are shown with orange,
blue, and purple, respectively. The best fit values are marked by ⇥. In the left panels only Re [T ] (Im [T ]) is varied
at a time, while in the right panels both vary simultaneously. The dashed curves correspond to the 3-� regions in
the analysis where only events with E⌫ < 5 MeV are taken into account. We note that the y-axis range is di↵erent
in the upper and lower panels.
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E.g. tensor interaction



SMEFT at dimension-6

Several SMEFT operators are probed by  measurementsνe → νe

ℒ4−fermion
D=6 = (L̄σ̄μL)Cll(L̄σ̄μL) + (EcσμĒc)Cee(EcσμĒc) + (L̄σ̄μL)Cle(EcσμĒc)

+(L̄σ̄μL)C(1)
lq (Q̄σ̄μQ) + (L̄σ̄μσkL)C(3)

lq (Q̄σ̄μσkQ)

+(EcσμĒc)Ceu(UcσμŪc) + (EcσμĒc)Ced(DcσμD̄c)

+(L̄σ̄μL)Clu(UcσμŪc) + (L̄σ̄μL)Cld(DcσμD̄c) + (EcσμĒc)Ceq(Qσ̄μQ)

+{(L̄Ēc)Cledq(DcQ) + ϵkl(L̄kĒc)C(1)
lequ(Q̄

lŪc) + ϵkl(L̄kσ̄μνĒc)C(3)
lequ(Q̄

lσ̄μνŪc) + h . c . }
+(Q̄σ̄μQ)C(1)

qq (Q̄σ̄μQ) + (Q̄σ̄μσkQ)C(3)
qq (Q̄σ̄μσkQ)

+(UcσμŪc)Cuu(UcσμŪc) + (DcσμD̄c)Cdd(DcσμD̄c)

+(UcσμŪc)C(1)
ud (DcσμD̄c) + (UcσμTaŪc)C(8)

ud (DcσμTaD̄c)

+(QcσμQ̄c)C(1)
qu (UcσμŪc) + (QcσμTaQ̄c)C(8)

qu (UcσμTaŪc)]

+(QcσμQ̄c)C(1)
qd (DcσμD̄c) + (QcσμTaQ̄c)C(8)

qd (DcσμTaD̄c)

+{ϵkl(Q̄kŪc)C(1)
quqd(Q̄lD̄c) + ϵkl(Q̄kTaŪc)C(1)

quqd(Q̄lTaD̄c) + h . c . }
+{(DcUc)Cduq(Q̄L̄) + (QQ)Cqqu(ŪcĒc) + (QQ)Cqqq(QL) + (DcUc)Cduu(UcEc) + h . c . }.

OHud = iH̃†DμH(UcσμD̄c)

All in all, short baseline reactor neutrino oscillations sensitive to 5 distinct 
linear combinations of dimension-6 SMEFT operators 



Projected FASERnu constraints
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[arXiv:2105.12136]  
with Joachim Kopp, Martin Gonzalez-Alonso, Yotam Soreq and Zahra Tabrizi   

Multiple operators will 
be probed, although existing 
constraints are stronger in  

a 1-at-a-time analysis 



M. González-Alonso EFT for neutrino data 

COHERENT in the SMEFT
[Breso-Pla, Falkowski, MGA, Monsálvez-Pozo, 

arXiv:2301.07036 ]

๏ "Flavor-blind" SMEFT (→ U(3)5 symmetry) 

๏ Global fit to Electroweak precision observables;

O = OSM + O (c1,c2, ..., c80) → χ2 = χ2 (ci)

l d

dl

l u

ul

ℓ̄γμℓ d̄γμd

ℓ̄γμℓ ūγμu

Current COHERENT constraints

[arXiv:2301.07036]   
with Victor Breso-Pla, and Martin Gonzalez-Alonso  

Several neutral-current operators 
are probed. Constraints complementary 

to exist electroweak precision constraints 
and improve visibly the current global fits



Summary

• EFT is a universal language to describe a multitude of low-energy and 
high-energy experiments, including neutrino oscillations and neutrino 
scattering on various targets


• SMEFT is perhaps the most popular EFT framework, as it does not 
assume existence of any particles beyond those of the Standard Model


• SMEFT allows one to combine constraints from different experiments 
and compare their sensitivity, in particular between neutrino 
experiments, LHC high-energy scattering, and LEP precision 
observables. All these inputs are vital to constrain the multi-
dimensional parameter space of SMEFT 


• A complete SMEFT analysis of neutrino oscillation experiments has not 
been done yet


