Subaru HSC Year 3 Cosmology results

Masahiro Takada (Kavli IPMU)

On behalf of Subaru HSC collaboration

Weak lensing working group

And efforts of many more!

Key weak lensing group publications: HSC Year 3

- The three-year shear catalog of the Subaru Hyper Suprime-Cam SSP Survey (Li X., et al. 2022, PASJ, 74, 2)
- A General Framework for Removing Point Spread Function Additive Systematics in Cosmological Weak Lensing Analysis (**Zhang T.** et al. 2022, MNRAS submitted, arXiv:2212.03257)
- Weak Lensing Tomographic Redshift Distribution Inference for the Hyper Suprime-Cam Subaru Strategic Program three-year shape catalogue (**Rau, M.** et al. 2022, MNRAS, submitted, arXiv:2211.16516)
- Hyper Suprime-Cam Year 3 Results: Cosmology from Cosmic Shear Two-Point Correlation Functions (Li X., et al. 2023, PRD, to be submitted)
- Hyper Suprime-Cam Year 3 Results: Cosmology from Cosmic Shear Power Spectra (Dalal R., et al. 2023, PRD, to be submitted)
- Hyper Suprime-Cam Year 3 Results: Measurements of the Clustering of SDSS-BOSS galaxies, galaxy-galaxy lensing and cosmic shear (More S., **Sugiyama S**., et al. 2023, PRD, to be submitted)
- Hyper Suprime-Cam Year 3 Results: Cosmology from Galaxy Clustering and Weak Lensing with HSC and SDSS using the Minimal Bias Model (**Sugiyama S.**, et al. 2023, PRD, to be submitted)
- Hyper Suprime-Cam Year 3 Results: Cosmology from Galaxy Clustering and Weak Lensing with HSC and SDSS using the Emulator Based Halo Model (Miyatake H., **Sugiyama S.**, et al. 2023, PRD, to be submitted)

https://hsc-release.mtk.nao.ac.jp/doc/index.php/wly3/

Early career scientists leading the projects marked in bold

Subaru Telescope Hyper Suprime-Cam (HSC)

- Large aperture (8.2m)
- Wide field-of-view (1.5 deg. diameter)
- Excellent image quality (~0.6 arcsec)
- A precursor survey of Rubin LSST

ACDM model: the standard model of the Universe

A stringent test of LCDM model

LSS-sigma8 vs. CMB-inferred sigma8

• sigma8, a parameter to which galaxy surveys (large-scale structure) is most sensitive to

$$\sigma_8^{\rm LSS} \equiv \left[\left\langle \left(\frac{\delta \rho_{\rm m}}{\bar{\rho}_{\rm m}} \right)_{8h^{-1} \rm Mpc}^2 \right\rangle \right]^{1/2}$$

Matter (mainly dark matter) inhomogeneities at 8Mpc/h

- To infer sigma8 from the CMB observables (e.g. Planck), we need to assume the cosmological model to follow the time evolution of mass fluctuations over cosmic time from $z \sim 1000$ to $z=0 \Rightarrow$ extrapolation
- For flat ACDM model:

$$\sigma_8^{\rm CMB} \simeq 0.83 \left(\frac{A_{\rm s}}{2.2 \times 10^{-9}}\right)^{1/2} \left(\frac{\Omega_{\rm m}}{0.31}\right)^{0.24} \left(\frac{\Omega_{\rm b}h^2}{0.022}\right)^{1/3} \left(\frac{\Omega_{\rm m}h^2}{0.14}\right)^{0.56} \left(\frac{h}{0.68}\right)^{0.69} A_{\rm s}, \Omega_{\rm m}h^2, \Omega_{\rm b}h^2 \quad \text{CMB observables}$$

S8-tension $S_8 \equiv \sigma_8 \left(\frac{\Omega_{\rm m}}{0.3}\right)^{0.5}$

- A parameter to characterize "lumpiness" of the late-time universe
- A parameter to which large-scale structure (LSS) probes are most sensitive
- S8 values from most LSS probes displays a tension with that from CMB – S8 tension
- Unknown systematics or New physics beyond ACDM?

- HSC: 2014 2021 (HSC imaging done)
- HSC cosmology survey (i~26, grizy, ~1100 deg²)
 - HSC-Year 3 weak data: ~416 sq. deg., i<24.5, n~16 arcmin⁻² (Li et al. 22)

Weak gravitational lensing – a probe of dark matter distribution

$$\gamma = \frac{a-b}{a+b} \sim \Omega_{\rm m} \int_0^{\chi_{\rm s}} \mathrm{d}\chi \,\,\chi \left(1 - \frac{\chi}{\chi_{\rm s}}\right) \delta_{\rm m}(\chi, \chi \boldsymbol{\theta})$$

- An image of distant galaxy is distorted
- Lensing distortion (=ellipticity) is a tiny effect, ~ 1% in ellipticity amplitude
- If observed, it can probe the matter fluctuation field along the line-of-sight direction – a powerful way to probe DM distribution
- High-quality image like that of Subaru is crucial for accurate weak lensing measurement

HSC Year 3 Cosmology Analyses

- HSC Year 3 data: ~416 sq. deg. \Leftarrow Year 1 ~140 sq. deg., a factor of 3 wider
- Galaxy shape catalog: Xiangchong Li (the former IPMU student), Miyatake et al. 22
- Used the sophisticated simulated data (using HST) for the calibration

X. Li (IPMU⇒CMU)

Redshift distribution inference

- Grey: photo-z likelihood (DNNz) + cosmic variance
- Clustering Redshift: crosscorrelation between HSC source catalog and CAMIRA-LRG
- Red: joint posterior of the two
- Source galaxies with z>1.2 are not calibrated by CAMIRA-LRG samples.

Cosmological dependence of cosmic shear

• Cosmic shear 2pt correlation function (power spectrum)

$$C_{i_s j_s}(\ell) = \int_0^{\chi_H} \mathrm{d}\chi \ \frac{q_{i_s}(\chi)q_{j_s}(\chi)}{\chi^2} P_m^{\mathrm{NL}}\left(k = \frac{\ell + 1/2}{\chi} : \chi\right)$$

nonlinear matter power spectrum

• Here chi: comoving radial distance, i_s, j_s are the tomographic redshift bins and q(chi) is

$$q_{i_s}(\chi) = \frac{3}{2} \Omega_{\rm m} H_0^2 \frac{\chi}{a(\chi)} \int_{\chi}^{\chi_H} \mathrm{d}\chi_s \underline{p_{i_s}(\chi_s)} \frac{\chi_s - \chi}{\chi_s}$$

source redshift distribution

- In configuration space, $\xi_{+/-(i_s j_s)}(\theta) = \int \frac{\ell d\ell}{2\pi} C_{i_s j_s}(\ell) J_{0,4}(\theta \ell)$
- Further need to include contributions of intrinsic alignments and baryonic physics effect in theory predictions

Cosmology inference: A test of ΛCDM model

data

- 2pt function •
- High-precision measurement ٠
- Systematics & null tests ٠
- Unbiased estimator •
- Data cuts •

covariance

- Sample variance
- Mock catalogs/data

model

- Accurate model
- Nonlinear clustering & baryonic physics (with simulations)
- Nuisance paras to model systematic effects

We (international team) have developed the pipelines of these parts (not as easy as it sounds at all)

Blind Analysis

We need to avoid confirmation bias: we may unconsciously correct systematics to match Planck cosmology.

Catalog-level blinding blind (0,15 We prepare three blinded catalogs with slight offset of blind 1 WL shear calibration. One of them is the true catalog -blind 2 Analysis-level blinding When plotting a contour, we blind the central value S_{∞} 0'60 Note: Different sets of blinded catalogs are used for different cosmology analyses. Systematic tests 0.13 Stress tests with various analysis choices e.g.) scale cuts, model variations, etc... 0,00 0,13

 $|\Delta S_8| \simeq 0.1 > |S_{8, ext{CMB}}^{\Omega_{ ext{m}}} - S_{8, ext{LSS}}|$

- The team promises that the unblinded results would be published regardless of the outcome
- Cannot change/modify the analysis method after unblinding

Cosmic shear tomography (configuration- and Fourier-space)

Li+; Dalal+

Use unshaded angular/multipole range (i.e. scale cuts) for cosmology inference

Angular scale vs. multipole scale

$$\xi_{+/-(i_s j_s)}(\theta) = \int \frac{\ell \mathrm{d}\ell}{2\pi} \ C_{i_s j_s}(\ell) J_{0,4}(\theta\ell)$$

- $\xi_+: \theta > 7$ arcmin
- ξ_{-} : θ > 30 arcmin
- C_ell: 300<ell<1800
- Fourier space analysis uses smaller-scale information

Residual source redshift (photo-z) errors?

- Red: joint posterior of the two
- The redshift distribution inference gives an estimation of the mean redshift in each tomographic bin, to the precision of

 $\sigma(\bar{z}_{s(i_s)}) \simeq 0.01 - 0.02$

• However ...

Source galaxies with z>1.2 are not calibrated by CAMIRA-LRG samples.

Residual source redshift (photo-z) errors? (contd.)

• If we employ the Gaussian prior inferred by the the redshift distribution inference, i.e.

 $\sigma(\bar{z}_{s(i_s)}) \simeq 0.01 - 0.02$

- we found, during the blinding analysis stage, that the internal consistency test (right plot) we failed
- HSC-Y1 cosmology analysis (Miyatake+22) also implied a residual systematic error in source redshifts at z>1

Our approach: "robust" vs. "precision" MT & Oguri 2011; Miyatake+21,22

- *Photometric redshift errors* are the most important systematic error; 5 colors (grizy) have limited information on galaxy properties
- Tomography using low-redshift galaxies that have either spec-z or more accurate photo-z
- Cross-correlation can be used to "calibrate" photo-z uncertainties for high-z HSC galaxies

• For each high-z HSC source galaxy, shear is

$$\gamma(\boldsymbol{\theta}; z_s) \sim \int_0^{z_s} \mathrm{d}\chi \ W(\chi, \chi_s) \delta_{\mathrm{m}}(\chi, \chi \boldsymbol{\theta})$$

The cross-correlation with low-z large-scale structure tracers gives

$$\begin{array}{l} \left\langle \gamma(\boldsymbol{\theta}; z_s) X(\boldsymbol{\theta}', z_l) \right\rangle \sim W(\chi_l, \chi_s) \xi_{\mathrm{mX}}(\chi_l \Delta \boldsymbol{\theta}; z_l) \\ \delta_{\mathrm{g}}(\mathbf{x}, z_l) \end{array} \\ \begin{array}{l} \text{SDSS spectroscopic galaxies} \\ \gamma(\boldsymbol{\theta}', z_l) \quad \text{low-z HSC galaxy shapes} \end{array}$$

 This method statistically allows for calibration of photo-z errors

cosmic shear cosmology: parameters and priors

Parameter	Prior	
Cosmological para	meters (Section IV A)	
$\Omega_{ m m}$	$\mathcal{U}(0.1, 0.7)$	
$A_{\rm s}~(\times 10^{-9})$	$\mathcal{U}(0.5, 10)$	
n _s	U(0.87, 1.07)	
h_0	$\mathcal{U}(0.62, 0.80)$	
$\omega_{ m b}$	$\mathcal{U}(0.02, 0.025)$	
Baryonic feedback	parameters (Section IV A)	
$A_{\rm b}$	$\mathcal{U}(2,3.13) \longrightarrow \text{baryonic effect}$	ct
Intrinsic alignmen	t parameters (Section IV B)	
A_1	$\mathcal{U}(-6,6)$	
η_1	$\mathcal{U}(-6,6)$	
A_2	$\mathcal{U}(-6,6)$ - IA (TATT)	
η_2	$\mathcal{U}(-6,6)$	
b _{ta}	$\mathcal{U}(0,2)$	
Photo- <i>z</i> systematic	s (Section IV C)	
Δz_1	$\mathcal{N}(0, 0.024)$	
Δz_2	N(0, 0.022)	
Δz_3	$\mathcal{U}(-1,1)$ residual entri in	
Δz_4	$\mathcal{U}^{(-1,1)}$ J source redshift	
Shear calibration	Diases (Section IV D)	
Δm_1	$\mathcal{N}(0.0, 0.01)$	
Δm_2	N(0.0, 0.01) - shear error	
Δm_3	N(0.0, 0.01)	
Δm_4	$\mathcal{N}(0.0, 0.01)$	
PSF systematics (S (2)		
$\alpha'(2)$	$\mathcal{N}(0,1)$	
$\beta^{\prime(2)}$	N(0,1) PSE error	
$\alpha'^{(4)}$	$\mathcal{N}(0,1)$	
$\beta^{\prime(4)}$	$\mathcal{N}(0,1)$	

 We decided to use the uninformative flat prior on mean redshift of the z3 and z4 bins

 $\Pi(\Delta z_{3,4}) = \mathcal{U}(-1.0, 1.0)$

This is the first time; the previous WL cosmology work (DES and KiDS) employed the informative prior of sigma(Delta z)~0.01-0.02

- Include the parameter (A_b) to model the baryonic effects on the nonlinear matter power spectrum
- TATT IA model

 $S_8(C_\ell) = 0.776^{+0.032}_{-0.033}$ $S_8(\xi) = 0.769^{+0.031}_{-0.034}$

- 4% fractional precision of S8 measurement (even if using the uninformative, flat priors of dzs)
- After unblinding, we compared the two results, finding the consistent results of S8
- Including the marginalization over the baryonic effects and IA effects
- Implies non-zero dz3,4 values (implying the higher-redshift distribution of z3 and z4 bins than inferred by photo-z method)

Li+; Dalal+

Residual errors in source redshift distribution (zs>1)

• The self-calibration method in cosmology analysis implies significant non-zero residual errors in the source redshifts of z3 and z4 bins

Validation/internal consistency tests

The case using the Gaussian priors of z3 and z4 bins, inferred from the photo-z inference method

Cosmic shear data themselves DO NOT display strong baryonic feedback effects

HSC-Y3 cosmic shear (Li+): line is the best-fit DM-only prediction

DES-Y3 (Secco+): line is the DM-only model

effect for HSC-Y3) can fit the data at scales even below the scale cuts

3x2pt analysis with HSC x SDSS catalogs

Self-calibration of residual source redshift error with multiple SDSS spec-z bins

The 3x2pt HSC source sample is at high redshift $z \ge 1$, where

- photometric redshift estimate may be inaccurate,
- Cross calibrators (CAMIRA-LRGs) are not available.

Conventional approach:

Informative Gaussian prior with $\sigma(\Delta z_{\rm ph}) \sim 10^{-2}$

Our approach:

We adopt uninformative flat prior for the residual error in mean redshift of our source sample:

$$\Pi(\Delta z_{\rm ph}) = \mathcal{U}(-1,1)$$

 $\Delta z_{\rm ph}$ is self-calibrated by galaxy-galaxy lensing signals of three SDSS lens samples (Oguri & Takada 2011).

In this analysis, the self-calibration is based on spec-z SDSS lenses. For cosmic shear analyses of Li+ and Dalal+, the self-calibration is based on low-z photometric HSC galaxies.

30

Advantage of the use of spec-z SDSS lens sample $\gamma \sim \Omega_m \int d\chi \chi \left(1 - \frac{\chi}{\chi_s}\right) \delta_m(\chi, \chi \theta)$

- Galaxy-galaxy lensing: cross-correlation of foreground SDSS lens galaxy positions with shapes of background HSC galaxies
- The use of spec-z SDSS lens galaxy allows us to measure the g-g lensing as a function of projected separation (not angle)

$$\widehat{\Delta\Sigma}(R) = \left. \frac{\sum_{\rm ls} w_{\rm ls} \left\langle \Sigma_{\rm cr}^{-1} \right\rangle_{\rm ls}^{-1} e_{+,\rm ls}}{2\mathcal{R}\sum_{\rm ls} w_{\rm ls}} \right|_{R=\chi(z_{\rm l})\Delta\theta_{\rm ls}}$$

• Theory expectation: g-g lensing probes the projected average mass distribution around the lens galaxies (galaxy-matter cross-correlation)

$$\Delta \Sigma(R) = \langle \Sigma_{\rm gm} \rangle \, (< R) - \Sigma_{\rm gm}(R)$$

- HSC-Y3 3x2pt analysis uses the g-g lensing information at R>3Mpc/h (greater than virial radii of massive halos)
- Model: use the Dark Emulator (Nishimichi+19) to model the galaxy-matter cross-correlation, combined with halo occupation distribution to model galaxyhalo connection
 - \circ $\,$ Also use the PT based model, for cross check $\,$

HSC shape

SDSS lens

Validation of model and analysis choices with mocks

Cosmology from HSC x SDSS 3x2pt analyses

mall-scale analysis result for flat
$$\Lambda CDM$$

$$\Omega_{m} = 0.382^{+0.031}_{-0.047}$$

$$\sigma_{8} = 0.685^{+0.035}_{-0.026}$$

$$S_{8} = 0.763^{+0.040}_{-0.036}$$
5% constraint!
 $\Delta z_{ph} = -0.05 \pm 0.09$

- Good agreement between small & large-scale analysis.
- \Box Significance of $\Delta z_{\rm ph} < 0$ increases to 1.6 σ when we adopt BAO prior on $\Omega_{\rm m}$

$$S'_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.22} = 0.721 \pm 0.028$$

33

Summary of HSC Year 3 cosmology results

- Compare the cosmic shear and the 3x2pt result, after the unblinding
- Consistent cosmological constraints from the blind analyses
 - Cosmic shear (Real and Fourier space)
 - 3x2pt analysis (Linear and Quasi-linear scales)
- Conservative analyses in the presence of systematic uncertainties in the redshifts of source galaxies
 - Shear-ratio test currently in progress
- Difference from the CMB expectation in LCDM model context based on various tension metrics range from 2-2.5 sigma

Internal consistency of HSC results

We test internal consistency of the results from three HSC projects.

We run simulated analyses on 2000 noisy mocks, taking account of cross-covariance between different projects' probes.

HSC results are fairly consistent with each other!

S8 tension!

Galaxy weak lensing (k~1 h/Mpc, z<1)

Redshift-space galaxy clustering (k~0.1 h/Mpc, z<1)

SNOWMASS 2021 Summer study: Abdalla et al. (2022)

However, ACT DR6 CMB lensing result came out ...

Planck CMB aniso.
 Planck CMB aniso. (+A_{lens} marg.)
 Planck CMB lensing + BAO
 SPT CMB lensing + BAO
 ACT CMB lensing + BAO
 ACT+Planck CMB lensing + BAO
 DES-Y3 galaxy lensing + BAO
 KiDS-1000 galaxy lensing + BAO
 HSC-Y3 galaxy lensing (Fourier) + BAO
 HSC-Y3 galaxy lensing (Real) + BAO

 Now S8 values inferred from CMB and galaxy lensing are in tension

0.8

 $S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5}$

 CMB lensing inferred cosmology (ACT and SPT) is consistent with Planck
 37

All due to baryons?

• Arico+ 23 reperformed cosmology inference analysis of DES-Y3 cosmic shear data using more flexible baryonification model

Baryonic Feedback

Li+

Summary: HSC-Y3 cosmology results

- Subaru HSC Year 3 results: 416 sq. deg., ~16 gals/arcmin²: 3 analyses
 - Real-space cosmic shear tomography: Xiangchong Li+
 - Fourier-space cosmic shear tomography: Roohi Dalal+
 - 3x2pt cosmology (HSC+SDSS): Sunao Sugiyama+ (PT), Miyatake, Sugiyama+ (halo model)
- We tried to implement robust cosmology analysis for flat ACDM model
 - Blind analysis (catalog and analysis levels)
 - Employed uninformative flat prior of residual systematic error in the mean source redshift for galaxies at z>1
 - Performed various validation tests and internal consistency tests
- Achieved ~4% fractional precision of S8: S8~0.76-0.78±0.03, in 2-2.5σ tension with Planck cosmology
 - Found a hint of residual redshift error, at the level of $|\Delta z| \sim 0.1$
- However, now ACT lensing, consistent with Planck, came out
- New physics or something else very exciting!

