Noise mitigation with iDQ in MBTA

Amazigh OUZRIAT

PhD Candidate – Institut des 2 Infinis de Lyon

MOJJI VIRGO

ICUJIVIRGO

iDQ : Framework for statistical inference of glitches

- Used offline at Hanford & Livingston in O3, to be used at Virgo in O4
- iDQ correlates auxiliary data information and strain data
- Trains safe auxiliary channels only
- The iDQ timeseries are machine-learning based data quality products

=> Probabilistic quantities to estimate glitch presence in h(t)

• Incorporated as DQ flag in PyCBC & GstLAL

IIOJJ VRGO

Motivation

- Use iDQ outputs to flag DQ problems => improve search sensitivity
- MBTA used CAT2 in O3, will not be produced by DetChar in O4
- Instead of vetoing : reranking events, allowing detection of loud signal during flagged times (Example: GW190424A)
- Current strategy : reweighting SNR single triggers using iDQ, expected improvement of VT and the surrounding GW190424A vetoed by CAT2

Recovered after iDQ incorporation into GstLAL

iDQ timeseries

- 5 outputs : Rank, FAP, Eff/FAP, P_{glitch} , $log(L)$
- Sampled at 128Hz
- P_{glitch} will not be produced during O4
- GstLAL uses $log(L)$ to downgrade triggers : $c = \frac{\mathcal{L}(glitch)}{\mathcal{L}(clean)}$
- PyCBC uses $log(L)$ to correct trigger rate in the time dependent noise model

 $IIOJIVIR(T)$

iDQ timeseries – Chunk 33

- We study MDC chunks (32-36)
- In these slides chunk 33, GPS Time within [1263751884, 1264528208]
- Use $log(L)$ as DQ flag.
- Conservative approach : $log(L) < 0 \rightarrow log(L) = 0$
- Downsample from 128Hz to 1Hz
- 3 log(L) trend timeseries :
	- Maximum 1Hz $log(L)$
	- Median 1Hz $log(L)$
	- Mean 1Hz $log(L)$

ICOJJVIRGO

Omicron pipeline – Chunk 33

- Omicron is a glitch search pipeline used as input to train iDQ
- We use SNR>5 triggers in h(t) with 0.1 clustering time
- Over 250k (400k) glitches in Hanford (Livingston)
- Sub-second glitches are dominant

IIOJII VIRG

iDQ vs Omicron – Chunk 33

- Divide chunk 33 into two distinct timeseries (1Hz) : clean region (segments containing no Omicron triggers with SNR > 5), glitchy regions (segments containing at least a Omicron trigger with SNR > chosen SNR cut)
- Define several glitchy regions with different SNR cut
- For each segment we calculate Max/Mean/Median $log(L)$

ICOJIVIRGO

iDQ vs Omicron – Chunk 33

ROC within chunk 33 (Hanford), Omicron SNR cut = 5

FAP

 10^{-3}

FAP

- LOGLIKE MEAN **COGLIKE MAX**

 0.8

 $\begin{array}{cc}\n\text{Efficiency} & \circ\\ \circ & \circ\\ \circ & \circ\end{array}$

 0.2

Efficency
e
e
e
e

 0.2

- LOGLIKE MEDIAN

- LOGLIKE MEAN

LOGLIKE MAX

LOGLIKE MEDIAN

- ROC curves : Efficiency vs FAP
- **Efficiency** : fraction of glitchy samples removed by cut on $log(L)$
- **FAP** : fraction of clean samples removed by cut on $log(L)$
- SNR>5 poor efficiency/FAP
- Improvement when defined with SNR>10
- Using Maximum 1Hz $log(L)$ more efficient

ROC within chunk 33 (Livingston), Omicron SNR cut = 5

- LOGLIKE MEAN

C LOGLIKE MAX

- LOGLIKE MEDIAN

 1.0

 0.8

IIOJJVIRGO

iDQ vs Omicron – Chunk 33

- For SNR>50 Omicron glitches, a cut at $log(L) = 5$:
	- 22% Eff vs 0.3% FAP in H for max $log(L)$
	- 17% Eff vs 0.08% FAP in L for max $log(L)$
- For SNR>500 Omicron glitches, a cut at $log(L) = 5$:
	- 29% Eff vs 0.3% FAP in H for max $log(L)$
	- 29% Fff vs 0.08% FAP in L for max $log(L)$
- Only a small fraction of triggers have $log(L)$ > 0, meaning only this fraction can be rejected by iDQ

 $10⁻$ **FAP**

IIOJIVIRGO

MBTA BBH triggers vs Omicron – Chunk 33

- We run MBTA to get single detector triggers in Hanford & Livingston
- We select only events with rwSNR > 6 (~200k triggers, enough stats)
- Separate the triggers into 2 populations:
	- Triggers in regions defined as glitchy by Omicron (at least an Omicron trigger with SNR > given SNR cut)
	- Triggers in clean region
- Calculate the MBTA triggers rate in both regions $: \frac{R_{glitchy}}{R_{ap}}$ $\frac{R_{gllitchy}}{R_{clean}}$ in H > $\frac{R_{gllichy}}{R_{clean}}$ $\frac{q_{ulcny}}{R_{clean}}$ in L
- Higher cuts on Omicron SNR => \sim higher $\frac{R_{glitchy}}{1}$ R_{clean}
- No clear dependency on MBTA SNR

BBH MBTA triggers distribution for chunk 33 (Livingston)

BBH MBTA triggers distribution for chunk 33 (Hanford) with MAX LOG>0 BBH MBTA triggers distribution for chunk 33 (Livingston) with MAX LOG>0

ICOJIVIRGO

MBTA BBH triggers vs iDQ – Chunk 33

- We run MBTA to get single detector triggers in Hanford & Livingston
- We select only events with rwSNR > 6 (~200k triggers, enough stats)
- Separate the triggers into 2 populations:
	- Triggers in regions defined as glitchy by iDQ (samples with $log(L)$ > given $log(L)$ cut)
	- Triggers in clean region $(log(L) = 0)$
- Calculate the MBTA triggers rate in both regions
- No clear dependency on MBTA SNR
- Higher cuts on $log(L)$ => \sim higher $R_{glitchy}$ R_{clean}

ICUJIVIRGO

iDQ incorporation into MBTA

• Reweight single detector triggers SNR :

$$
SNR_{iDQ} = \sqrt{SNR^2 - \alpha \log(\mathcal{L})}
$$

- Run MBTA with injections, study efficiency & VT changes after reweighting SNR using iDQ
- iDQ useful if it globaly improves (reduces) FAR of injections
- Calculation of new FAR requires editing MBTA code (coming soon)
- Meanwhile : Approximative method to calculate new FAR of injections

IIOJJVRGO

$FAR_{iDQ}(\alpha)$ calcuation

• First MBTA run over chunk 33 without injections (noise only)

•
$$
SNR_{iDQ} = \sqrt{SNR_{old}^2 - \alpha * \log(L)}
$$

• $R_H =$ N singles triggers in Hanf. with SNR_{iDQ}>6 N singles triggers in Hanf . with SNR_{old}>6 • $R_L =$ N singles triggers in Liv. with SNR_{iDQ}>6

- N singles triggers in Liv.with SNR_{old}>6
- Second MBTA run over chunk 33 with injections

$$
FAR_{iDQ} = FAR_{old} * R_H * R_L * \frac{FAR_{old}(SNR_{iDQ})}{FAR_{old}(SNR_{old})}
$$

chunk33

IIOJIVRGO

$FAR_{iDQ}(\alpha)$ calcuation – chunk33

- α from 0 to 3 by step of 0.5
- $\forall \alpha$: max log(L) over template duration more efficient
- $\Rightarrow \alpha$ = 1.5 best choice so far
- $FAR < 10^{-3} [days^{-1}] : 1218$ injections recovered without iDQ
- $FAR < 10^{-3}$ $\lceil days^{-1} \rceil$: 1248
- \Rightarrow +2.5% \sim +31 injections recovered
- Dependancy on chirp mass : more data needed

IIOJIVIRGO

iDQ results in PyCBC & GstLAL

GstLAL

At most +6% in VT at $FAR \sim 10^{-6}$ $\lceil days^{-1} \rceil$

PyCBC

Average of +5% in VT at $FAR \sim 10^{-6}$ $\lceil days^{-1} \rceil$

At most +10% for very high chirp mass

Conclusion

- Preliminary results for chunk 33 :
	- Using 1Hz Maximum trend of $log(L)$ more efficient than Mean/Median
	- Large fraction of Omicron glitches are not flagged by iDQ
- Lower mass template can have large durations: consider iDQ on all template duration or some Δt around trigger time ?
	- Maximum $\log(\mathcal{L})$ over long durations could be overestimated \rightarrow falsely downgrading events
	- Should iDQ be used for short BBH only ? BHNS/BNS events ?
- Reweight single detector triggers SNR : $SNR_{iDQ} = \sqrt{SNR^2 \alpha \log(\mathcal{L})}$
- Approximative new FAR calculation : $\alpha = 1.5$ & using max $log(L)$ more efficient
- Reach +2.5% of efficiency at FAR = 10^{-3} $\lceil days^{-1} \rceil$
- Need to run MBTA once again after implementing iDQ reweighted SNR