Reconstruction in LArTPCs

Vyacheslav Galymov IP2I Lyon

IRN Meeting 20.06.23, Nantes

- Reconstruction approaches
	- Focus on the cases of ProtoDUNE-SP (DUNE LArTPC prototype) and MicroBooNE
- Incorporation of Machine Learning techniques

Two case studies

MicroBooNE:

- 90 ton LArTPC active volume
- Single drift volume of length 2.6 m
- Exposed to booster neutrino beam at FNAL

ProtoDUNE-SP

- One of two DUNE FD prototypes (ProtoDUNE-DP only took cosmics)
- 420 ton LArTPC active volume
- Two drift volumes 3.6 m long each
- Exposed to charged beam (π, K, p, e) o.3 7 GeV/c at CERN

TPC readout cartoon

+ photon system to detect prompt scintillation

Reconstruction on surface

- LArTPC is a "slow" detector
	- Takes a couple of ms to drift charge from cathode to anode: vdrift ~ 1.6 m / ms (@500 V/cm)
- On-surface substantial activity due to cosmic rays
- Large sample of "free" cosmics:
	- Good for detector characterization
	- But an additional complication for reconstruction

Run: 5145 Event: 26918 Beam momentum: 7GeV 10 Oct 2018 22:57:33 (GMT) 1.25

 \sum_{m}

6 m

Tools

- ART [J.Phys.Conf.Ser. 396 (2012) 022020] is an event-processing framework built and maintained at FNAL
	- Used as a basis by Fermilab experiments (e.g., NOvA, Mu2e, LArTPC experiments)
- Particular adaptation for LArTPC (ArgoNeuT, LArIAT, MicroBooNE, SBND, ICARUS, DUNE) experiments is <u>LArSoft</u> framework/toolkit
	- Interface to Pandora Software Development Kit [Eur. Phys. J., C75(9):439, 2015] used for reconstruction and pattern recognition
	- Pandora SDK development started for ILC and then undergoing extensive development in the context of LArTPC experiments
- For MicroBooNE, a [WireCell](https://wirecell.bnl.gov/) toolkit have been also developed at BNL
	- Provides a full (MicroBooNE) event reconstruction [JINST 17 P01037, 2022]
	- Some integration within LArSoft for signal simulation and signal processing

LArTPC event processing

Noise filtering

Raw ADC channel data Filtered ADC channel data APA 3 collection plane charge after calibration APA 3 collection plane charge after correlated noise removal 2550 2550 **DUNE:ProtoDUNE-SP** DUNE:ProtoDUNE-SP 2500 2500 č 2450 2450 2400 2400 0.2 2350 2350 2300 2300 -0.2 2250 2250 -0.4 2200 2200 -0.6 2150 2150 -0.8 2100 2100 5000 6000 2000 3000 4000 1000 Ω 1000 2000 3000 4000 5000 6000 Tick Run 5452 event 2 2018-10-23 05:48:42.27 UTC Run 5452 event 2 2018-10-23 05:48:42.27 UTC Tick

200

100

 -100

 -200

 -300

- Signal (pre)processing:
- Electronics response calibration
- Coherent noise filtering
- Field response deconvolution
- Regions of interest selection

or deposited (collection) on each wire / strip

Charge "seen" (induction)

DUNE:ProtoDUNE-SP DUNE:ProtoDUNE-SP 500 $\frac{1}{2}$ 300- $\frac{1}{9}$ 300 200 100 -10 100 175 125 150 175 125 150 100 U Wire No. U Wire No.

(a) After Noise Filtering

(b) After Deconvolution

Field response deconvolution using WireCell

LArTPC event processing

Raw ADC channel data

- Signal processing:
	- Coherent noise filtering
	- Electronics response calibration
	- Field response deconvolution
	- Regions of interest selection

LArTPC event processing (LArSoft)

Pandora reconstruction workflow

- Over a hundred of algorithms are used to gradually build up and improve reconstruction of event features
- Two principal chains have been developed for and deployed in MicroBooNE/ProtoDUNE
	- **PandoraCosmics** : an algorithm chain targeting the reconstruction of cosmic ray muon tracks
	- **PandoraNu / PandoraTestBeam** : an algorithm chain that is built around identifying interaction vertex and then reconstructing individual tracks / showers left by emerging particles

PandoraCosmics

- Muons are assumed downward going: the vertices are at highest y
- Track -oriented clustering
- Showers are delta rays / decay electron and added as daughters to primary muon
- Flow:
	- 2D reconstruction
	- 3D track reconstruction
	- Delta-ray reconstruction
	- 3D space-point reconstruction

Parent muon (track) particle

Matching 2D projections

• Rely on common time coordinate and readout plane geometry to merge 2D clusters

Matching 2D projections

PandoraNu/PandoraTestBeam

• Flow

- 2D reconstruction
- 3D vertex reconstruction
- Track and shower reconstruction
- Particle hierarchy reconstruction
- For test beam:
	- Revisit particles emerging from the vertex and find the one most consistent with the incoming test beam particle

Consolidated reconstruction for test beam events in ProtoDUNE-SP

- Both Cosmics and TestBeam chains combined in order to reconstruct onsurface events
- Run cosmic reconstruction on all particles as a first step
- Tag clear cosmic ray rays
- Make 3D slices and run TestBeam and Cosmic chains on each slice

- Clear cases when cosmics out of beam time enter / exit TPC volume
- Cosmics crossing the cathode plane are "stitched" to find their arrival time wrt beam time

Event slicing

- Separate / slice hits from different interactions
- Run TestBeam / Cosmics reconstruction on each slice and select the "best" beam event
- Boosted Decision Tree (BDT) built around the test beam entrance is known and cosmics typically have track-like topologies compared to complex ones from test-beam particles

Different colors mark different slices A 3 GeV/c π^+ beam event is in bright red

Beam particle identification efficiency

Pandora cosmic-ray track reconstruction

Efficiency: fraction of MC particles that are matched to at least one reconstructed particle **Purity**: fraction of hits in reconstructed particle that are shared with an MC particle **Completeness**: fraction of hits in the MC particle that are shared with a reconstructed particle

Data/MC: ~5% fewer CRs reconstructed than in simulation possibly due to slight overestimation of the cosmic ray flux in MC

Measured dE/dx for cosmic-ray muons

[JINST 15 P12004, 2020]

dE/dx Data / MC comparison

Stopping muons dE/dx distribution

Reconstructed d $Q/dx \rightarrow m$ easured dE/dx

- Measured correction for attachment to electronegative impurities
- Measured uniformity of readout plane response
- Absolute energy scale determined by fitting a sample of stopping muons
- Charge recombination effects in LAr taking into account local electric field strength

Beam particles

- Calibrations derived from cosmic ray analyses are applied to beam particles
- Many hadron cross-section analysis …

Electron / gamma separation

 e/γ separation based on dE/dx in the pre-shower region

Wire-Cell reconstruction

- A LArSoft interface to wire-cell is used for signal processing
- In MicroBooNE the toolkit has been extended to offer full 3D reconstruction and pattern recognition
	- Search for LEE : Phys. Rev. D 105, 112005, 2022
- As a starting point one attempts to build 3D space points from reconstructed hits
	- The readout plane is portioned into cells given by the anode wire geometry
	- The drift coordinate is sliced and hits within each time slice are used to populate all possible cells
	- For a given space-point same charge should be measured x3 by the wire planes

Find 2D cell + measured drift time \rightarrow 3D point

Wire-Cell charge imaging

• Solve a system of linear equation to simultaneously find the right 2D cell(s) and the best estimate of the "true" charge from measured quantities on each wire:

 $y = Ax$

- Not a trivial inverse problem: undetermined linear system
- However, true signal is sparse \rightarrow compressed sensing technique [Comm. Pure Appl. Math., 59: 1207-1223]

Example Wire-Cell 3D imaging

Selection of neutrino event clusters in Wire-Cell

- Space points are grouped in 3D TPC clusters
	- Not a simple grouping by proximity
	- Need to account for gap both due to nonfunctional channels and physically separated clusters from the same interaction (e.g., π^0 decays)
- Match TPC clusters to reconstructed light flashes & select the ones coincident with beam timing
	- 85% v_μ CC events have completeness > 80%
	- 90% v_e CC or NC have completeness > 70%

Machine Learning

LAr TPC event is a set of images in time and space Natural to classify their features with neural networks

- Overall event classification based on topology : v_e CC, v_μ CC, NC π
	- Neutrino interaction classification in DUNE [Phys. Rev. D 102, 092003]
- As part for reconstruction enhancement:
	- Interaction vertex finding (Pandora, Wire-Cell)
	- Classification of hits as belonging to shower or track-like hit collections

Example event

Goal is to classify each hit as either track-like or shower-like with a convolution neural network [Eur. Phys. J. C (2022) 82:903]

Classification of beam events in ProtoDUNE

Michel electron classification

(a) A pion candidate

A muon candidate (b)

Conclusions

- Remarkable progress in automated reconstruction of events in LArTPC have been made over the years
- For on-surface detectors the reconstruction tools handle complicated events containing beam interactions in large sea of cosmic ray background
- Incorporation of machine learning techniques is a rapidly developing field
- Currently mostly classification based on the topological information contained in "images"
- Efforts to go beyond classification get the full breakdown of the event with vertex position, PIDs, and energy / momenta of the final state particles …

Extras

Recombination parametrization: Birks form

• Birks form (ICARUS, [NIMA 523 \(2004\) 275\)](https://inspirehep.net/literature/658352):

$$
R = \frac{A}{1 + k/\varepsilon \times dE/dx}
$$

- ε electric field x LAr density, dE/dx expected energy loss and A, k are constants
- The fitted values (muons) of A and k parameters (NIMA 523) :

 $k = 0.0486$ (kV/cm)(g/MeV cm²)

 $A = 0.800$

Recombination parametrization: modified Box model

• ArgoNeuT [*JINST* **8** [P08005 \(2013\)\]:](https://iopscience.iop.org/article/10.1088/1748-0221/8/08/P08005)

 $R=$ $ln(A + \xi)$ ξ $\xi = B/\varepsilon \times dE/dx$

The fit parameters A & B; ε – electric field x density

• The fitted parameters (stopping protons) in the paper:

 $B = 0.212$ (kV/cm)(g/MeV cm²)

 $A = 0.930$

 $A = 1$ in canonical Box model in [Phys. Rev. A 36 (1987) 614] (hence "modified")

From dQ/dx to dE/dx

$$
\frac{dQ}{dx} = \frac{1}{W_{ion}} R\left(\frac{dE}{dx}, \varepsilon\right) \frac{dE}{dx}
$$

• To obtain dE/dx from dQ/dx need to invert recombination model

$$
W_{\text{ion}} = 23.6 \times 10^{-6} \text{ MeV/electron (the work function of argon)}
$$

\nBirks $dE/dx = \frac{dQ/dx}{A_B/W_{\text{ion}} - k_B \cdot (dQ/dx)/\mathcal{E}}$. ε - electric field x LAr density

$$
\text{Box:} \quad dE/dx = (exp(\beta W_{ion} \cdot (dQ/dx)) - \alpha)/\beta. \quad \alpha = A
$$
\n
$$
\beta = B/\varepsilon
$$