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Overview

* Reconstruction approaches
* Focus on the cases of ProtoDUNE-SP (DUNE LAr TPC prototype) and MicroBooNE

* Incorporation of Machine Learning techniques



ProtoDUNE-SP
TWO C a S e St U d | e S * One of two DUNE FD prototypes (ProtoDUNE-DP only took cosmics)
* 420ton LArTPC active volume
* Two drift volumes 3.6 m long each
* Exposedto charged beam (rt, K, p, ) 0.3 -7 GeV/c at CERN

MicroBooNE:

* goton LArTPC active volume

* Single drift volume of length 2.6 m

* Exposed to booster neutrino beam at FNAL
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Both with 3-view wire-plane readout




TPC readout cartoon
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+ photon system to detect prompt scintillation



Reconstruction on surface

e LArTPCis a"“slow” detector

* Takes a couple of ms to drift charge
from cathode to anode: vdrift ~ 1.6
m [/ ms (@5oo V/cm)

* On-surface substantial activity
due to cosmic rays

* Large sample of “free” cosmics:
* Good for detector characterization

* But an additional complication for
reconstruction

Run: 5145

Event: 26918

Beam momentum: 7GeV

10 Oct 2018 22:57:33 (GMT)
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Tools

* ART IS an event-processing
framework built and maintained at FNAL

* Used as a basis by Fermilab experiments (e.g., NOvA, Muz2e, LAr TPC experiments)

* Particular adaptation for LArTPC (ArgoNeuT, LArIAT, MicroBooNE, SBND,
ICARUS, DUNE) experiments is LArSoft framework/toolkit

* Interface to Pandora Software Development Kit
used for reconstruction and pattern recognition

* Pandora SDK development started for ILC and then undergoing extensive
development in the context of LAr TPC experiments

* For MicroBooNE, a WireCell toolkit have been also developed at BNL
* Provides a full (MicroBooNE) event reconstruction
* Some integration within LArSoft for signal simulation and signal processing



https://larsoft.org/
https://wirecell.bnl.gov/

LAr TPC event processing

Noise filtering
Filtered ADC channel data

Raw ADC channel data
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LAr TPC event processing

Raw ADC channel data

Signal processing:

Charge “seen” (induction)
or deposited (collection)
on each wire [ strip

‘ “Hit” finder

Collection of hits in each

readout plane

Charge/tick [200 e]
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* Coherent noise filtering
* Electronics response calibration
* Field response deconvolution
* Regions of interest selection

DUNE:ProtoDUNE-SP

Deconvolved waveform

Fitted Gaussian hits

Time Tick [0.5us]

4650



LAr TPC event processing (LArSoft)

Raw ADC channel data

Signal processing:

* Coherent noise filtering
* Electronics response calibration
* Field response deconvolution
* Regions of interest selection

Charge “seen” (induction)
or deposited (collection)
on each wire [ strip

‘ “Hit” finder

Collection of hits in each

readout plane

Pandora SDK

Hit clustering in each

readout plane

Reconstruction in 3D

Higher level:

dE/dx & PID
Energy reco

Cluster hits in
each view / plane:
Plane channels vs
common time
coordinate

Merge clusters
between the planes
to obtain 3D event



Pandora reconstruction workflow

* Over a hundred of algorithms are used to gradually build up and
improve reconstruction of event features

* Two principal chains have been developed for and deployed in
MicroBooNE/ProtoDUNE

* PandoraCosmics : an algorithm chain targeting the reconstruction of cosmic
ray muon tracks

* PandoraNu / PandoraTestBeam : an algorithm chain that is built around
identifying interaction vertex and then reconstructing individual tracks /
showers left by emerging particles

10



PandoraCosmics

Muons are assumed downward going:
the vertices are at highesty

Track-oriented clustering

Showers are delta rays / decay electron
and added as daughters to primary
muon

Flow:
e 2D reconstruction
e 3D track reconstruction
 Delta-ray reconstruction
* 3D space-point reconstruction

Parent muon (track) particle
\/
/

| Daughter delta ray
yf «—— (shower) particles
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Matching 2D projections

* Rely on common time coordinate and readout plane geometry to merge 2D clusters

i : VW HVw
Require >90% I:1:1 [:2:2
overlap for all T
clusters
T k\“ i . Always select the clusters
s \ | . with the best match to
‘\ . resolve ambiguities with
| i thedeltarays
Fl s s
——3 x, drift position ——— x, drift position
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Matching 2D projections

Split clusters

that are appear 1
to “overshoot” in

one of the views
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Undershoot tracks:
merge broken v clusters if
can be matched to other
two planes
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PandoraNu/PandoraTestBeam

Track (x+). Daughter of

Primary p

Shower (y). Daughter 4
° F | OW of Primary \1 Shower (p.y). Daughter of
* 2D reconstruction \ \y
* 3D vertex reconstruction 1\ Teacke ), Dagher

Primary p

* Track and shower reconstruction o Do
* Particle hierarchy reconstruction Paent Beaun Paricle

Track (p), Daughter of

Parent Beam Particle

Parent Beam Particle

* For test beam: ST v

. . . \
* Revisit particles emerging from Shower () Dngheret |
the vertex and find the one most VI
consistent with the incoming test R | Tk P

beam particle [ -
x, drift position 1
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Consolidated reconstruction for test s |
beam events in ProtoDUNE-SP |

PandoraCosmic

l

Tag cosmic-ray muons

 Both Cosmics and TestBeam chains S .
combined in order to reconstruct on- Clear cosmie- {2
surface events S - |
* Run cosmic reconstruction on all 3D slicing
particles as a first step O\
o Tag Clear Cosm|c ray rays PandoraTestBeam PandoraCosmic
* Make 3D slices and run TestBeam Identify test-beam particles
and Cosmic chains on each slice RN
Test-beam particles Rema mi::li ;;}:mic-ray
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Cosmic ray tagging

l

Tagged CR ) /

=

-
e

y — ; |
Cosmic-ray muon ¥ *“— Drift direction X J

trajecto —_—
X | ry

e Clear cases when cosmics out of beam time enter [ exit TPC volume

* Cosmics crossing the cathode plane are “stitched” to find their arrival
time wrt beam time
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Event slicing

Different colors mark different slices
_ _ _ A3 GeV/cmtt beam event is in bright red
* Separate [ slice hits from different o——

Interactions -
e RunTestBeam [/ Cosmics reconstruction on W
F; 4

each slice and select the “best” beam event

T —

e Boosted Decision Tree (BDT) built around the T
test beam entrance is known and cosmics N
typically have track-like topologies compared
to complex ones from test-beam particles \\\
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Beam particle identification efficiency

DUNE:ProtoDUNE-SP Simulation
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Efficiency as a function of Nhits

DUNE:ProtoDUNE-SP Simulation
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Purity & completeness

DUNE:ProtoDUNE-S5P Simulation

Completeness

98% of reco CR have
purity >80%

82% of reco CR have
completeness > 80%

L |
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Pandora cosmic-ray track reconstruction

DUNE:ProtoDUNE-SP

= Simulation

+ Data

=

20 40 60 80

Number of Reconstructed Cosmic Rays

Efficiency: fraction of MC particles that are matched to at least one reconstructed particle
Purity: fraction of hits in reconstructed particle that are shared with an MC particle
Completeness: fraction of hits in the MC particle that are shared with a reconstructed particle

Data/MC: ~5% fewer CRs reconstructed than in simulation possibly due to slight overestimation of

the cosmic ray flux in MC

19
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number of hits (10%)

Measured dE/dx for cosmic-ray muons

Stopping muons dE/dx distribution dE/dx Data / MC comparison
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Reconstructed dQ/dx = measured dE/dx

* Measured correction for attachment to electronegative impurities

* Measured uniformity of readout plane response

* Absolute energy scale determined by fitting a sample of stopping muons
* Charge recombination effects in LAr taking into account local electric field strength
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Beam particles
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Electron / gamma separation

e/y separation based on dE/dx in the pre-shower region

ProtoDUMNE-SP
1 1 1 | 1 1 1 I

+ —— MC positrons
' 4 Data positrons
— MC photons
% Data photons

Arbitrary Units

4 6 8 10
dE/dx [MeV/cm]

22



Wire-Cell reconstruction

A LArSoftinterface to wire-cell is used for
signal processing 21] MicroBooNE

* In MicroBooNE the toolkit has been extended NN Y wires) LA T
to offer full 3D reconstruction and pattern N A A A
recognition T A Uwires

 Search for LEE : Phys. Rev. D 105, 112005, 2022 | s

Vertical R
direction |-~ 7 o e 7

* As astarting point one attempts to build 3D
space points from reconstructed hits

* The readout plane is portioned into cells given by
the anode wire geometry

* The drift coordinate is sliced and hits within each
time slice are used to populate all possible cells

* For a given space-point same charge should be
measured x3 by the wire planes

: H . ST .-_‘“Hl Hkl‘_l‘v_ w._ire‘s l-.l“h"‘-

* Beam direction

Find 2D cell + measured drift time =» 3D point
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Wire-Cell charge imaging

u2 v3

* Solve a system of linear equation to
simultaneously find the right 2D cell(s) and the ut @ ve
best estimate of the “true” charge from
measured quantities on each wire: @ @\_Fake Hits ¥

) = Ax @ @
True Hits‘@

* Not a trivial inverse problem: undetermined Measured

linear system charge —
— [H1)

* However, true signal is sparse = compressed (ut )\ (000 T TN o N e charge
sensing technique [Comm. Pure Appl. Math., 5o: u2 111000 13 || to be solved
1207-1223] vi|EF[00100T1 |- 4

v2 010010 e
\v3/| \100100/ )|




Example Wire-Cell 3D imaging




Selection of neutrino event clusters in Wire-Cell

* Space points are grouped in 3D TPC clusters
* Not a simple grouping by proximity
* Need to account for gap both due to non-
functional channels and physically separated

clusters from the same interaction (e.g., °
decays)

* Match TPC clusters to reconstructed light
flashes & select the ones coincident with
beam timing

* 85% v, CCevents have completeness > 80%
* 90% v, CC or NC have completeness > 70%

LUl
o
=
o2
o

PMT flashes MicroBooNE
6 I
I . |iCoincident with
2 T —
i v vbeam
4 1 :
N | G 50500040008 %003{ 0.]'01
0 N 1 I ‘ “ L ‘ 1
= 2 4
Time (ms)
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MicroBooNE data
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Neutrino event reconstruction T
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Machine Learning

LArTPC event is a set of images in time and space
Natural to classify their features with neural networks

* Overall event classification based on topology : v, CC, v,CC, NCr
* Neutrino interaction classification in DUNE

* As part for reconstruction enhancement:

* Interaction vertex finding (Pandora, Wire-Cell)
°[Classification of hits as belonging to shower or track-like hit coIIections]
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Example event

T DUNE:ProtODUE- Run 5815 Event 962
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©
X 4400 4. 5
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4200 !
U
o
4000 o
-
@)
3800
3600
0 100 200 300 400 500 600

Wire Number

Goal is to classify each hit as either track-like or shower-like with a
convolution neural network
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Classification of beam events in ProtoDUNE

DUNE;ProtaDUNE-SP

1 GeWic plon cand|dates

| f

Experlmental data

0,06

Frzctlnné:tf Events
=
=

0,02

Slmulation

I

i pion

1
I—Lﬁl'{IlJ1Tf"i1"I‘|1‘|‘|'“"Ll'll‘!l

0,00
% s P i i I
B Loty [TLL '.-|l||-|I'||1r:|1|||l|"|'||‘|i"'|"'
| o
|
“ o 0.2 04 0.6 0.8 1.0
Avarage CHN EM Score
DUNE:ProtoDUNE-SP
9 GaVic proton cand|dates
0.25 + Exparlmental data R
W
= Slmulatiom
50.20 N
>
w
e
I=l].15 i
£ roton
(%]
2o.10 [ P ]
"5
l L _
g.ﬂﬁ Tia s 3
e -
= | |
0 :: il LI T boalbb L g i
-2 :.5 -.--w--Ih 'IPIII."H.Ilﬂ'H_l'IHII 3 | 1
a “I‘l‘.l H !
\0 0,2 0.4 0e 0,8 1.0

Average CNN EM Score

ke

DUNE:ProtoeDUNE-SP
P L
1 GoVie muon cand|dates
|h‘ |- Exparimantal data
]
- Simulatien
§oz2f
>
"J I
k-
s
2 | muon
o
v 0 l
IL
.u.u_ L |
E
oo L
£ s l
& g 0.2 0.4 0.8 0.8 1.0
fverage CHN EM Score
DUNE:ProteDUNE-SP
03[ ' ' :
1 Gavie poshren cand|dates
* Experimenial daia
% 0.2 Slmulatlon
o 02t
&
‘s
= .
2 positron
8
E 0 -
0.0
g |
L] |I:- [l
AN ! 11 YT
8 . [ L)
0.0 0.2 04 0.8 0.8
Average CNN EM Score
Shower-like

Track-li
¢

>

DUNE:ProtoDUNE-SP Run 5815 Event 962

EEDANE T A mm
B . . TR
400 £ N 1\ >( iy — 0.8
Nt e — 07
9 300 | \w / \ -
= - '.11\;', / —{ 0.6
> . l\ N ’/ — 0.5
£ 200 | 0 — 04
oo AT 0.2
[ e L e N \
- VA N T | 0.1
/ ot \\‘*- | |
0 . - e ' : 0.0
0 1000 2000 3000 4000 5000 6000
Time Tick
Fraction of reconstructed particles classified into
appropriate class
Hit source Class Data fraction (%) Simulation fraction (%)
Pion Track 91.7 04 92.51+0.2
Muon Track llllelII"_'H:'f'lII | D(I"_'H:{f
Proton Track 96.9 £ 0.2 97.1 £ 0.1
Positron Shower 98.8 £ 0.1 97.9 0.1

Shower Score

30



Michel electron classification
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Conclusions

* Remarkable progress in automated reconstruction of events in LArTPC have
been made over the years

* For on-surface detectors the reconstruction tools handle complicated events
containing beam interactions in large sea of cosmic ray background

* Incorporation of machine learning techniques is a rapidly developing field

* Currently mostly classification based on the topological information contained
in “images”

* Efforts to go beyond classification get the full breakdown of the event with
vertex position, PIDs, and energy / momenta of the final state particles ...
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Recombination parametrization: Birks form

e Birks form (ICARUS, NIMA 523 (2004) 275):

A
" 1+k/exdE/dx

¢ — electric field x LAr density, dE/dx expected energy loss and A, k are
constants

* The fitted values (muons) of A and k parameters (NIMA 523) :
k = 0.0486 (kV/cm)(g/MeV cm?)
A =0.800
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https://inspirehep.net/literature/658352

Recombination parametrization: modified Box model

¢ AI’gONEU [ [JINST 8 Po8oosg (2013)]:
In(A4A + é

€=B/€X§E/dx

The fit parameters A & B; € — electric field x density

* The fitted parameters (stopping protons) in the paper:
B = 0.212 (kV/cm)(g/MeV cm?)
A =0.930

A =1in canonical Box model in [Phys.
Rev. A 36 (1987) 614] (hence “modified”)
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https://iopscience.iop.org/article/10.1088/1748-0221/8/08/P08005
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.36.614

From dQ/dx to dE/dx

dQ _ 1 (dE \dE
dx W, dx’ <) dx

e To obtain dE/dx from dQ/dx need to invert recombination model

Wion = 23.6 X 107° MeV/electron (the work function of argon)

dQ/dx
AB/M/EOH —kg . (dQ/dx)/éa

¢ — electric field x LAr density

Birks: dE/dx:

Box: dE/d)C — (exp(ﬁann ) (dQ/d}:)) o {X)/ﬁ a
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