Neutrino-nucleus interaction event generators for neutrino oscillation experiments

Outline

- Challenges for current and future long-baseline experiments
- Nuclear effects what do we need to control?
- The role of neutrino event generators
- Success/limitations
- Solutions?

Current experiments – results and challenges

Long-baseline experiments are **uniquely suited to search for CP violation** in the lepton sector and study 3-flavor oscillations

 Measurements of CP violation are severely limited by statistics and knowledge of MO Now entering the precision measurement era

Experiment	$ u_{\mu}$ events	$ar{ u}_\mu$ events	ν _e events	$ar{m{ u}}_e$ events	Systematic error
T2K	318	137	94	16	~5%
NOvA	211	105	82	33	~10%

Experiment	$ u_{\mu}$ events	$ar{ u}_{\mu}$ events	v_e events	$ar{m{ u}}_e$ events	Systematic error
T2K	318	137	94	16	~5%
NOvA	211	105	82	33	~10%
Hyper-K	~10000	~14000	~2000	~2000	?
DUNE	~7000	~3500	~150	~500	?

Experiment	$ u_{\mu}$ events	$ar{ u}_\mu$ events	ν _e events	$ar{ u}_e$ events	Systematic error
T2K	318	137	94	16	~5%
NOvA	211	105	82	33	~10%
Hyper-K	~10000	~14000	~2000	~2000	Need ~1%-3%!
DUNE	~7000	~3500	~150	~500	Need ~1%-3%!

- Woefully unprepared at current level of systematics!
- Need dedicated, focused effort in order for future experiments not to be pre-maturely limited by systematics

Finding the culprit

TZK

~ `								Neutrino Cross Sections	
Error source (units: %)	FHC 1	R RHC	$\left \begin{array}{c} \mathrm{MR} \\ \mathrm{FHC} \ \mathrm{CC1}\pi^+ \end{array} \right.$	FHC	RHC	$\frac{1 \mathrm{R} e}{\mathrm{FHC} \ \mathrm{CC1} \pi^+}$	FHC/RHC	Detector Calibration	
Flux	2.8	2.9	2.8	2.8	3.0	2.8	2.2	Near-Far Uncor.	
Xsec (ND constr)	3.7	3.5	3.0	3.8	3.5	4.1	2.4	Detector Response	
Flux+Xsec (ND constr)	2.7	2.6	2.2	2.8	2.7	3.4	2.3	Lepton Reconstruction	
Xsec (ND unconstr)	0.7	2.4	1.4	2.9	3.3	2.8	3.7	Neutron Uncertainty	
SK+SI+PN	2.0	1.7	4.1	3.1	3.8	13.6	1.2	Beam Flux	
Total All	3.4	3.9	4.9	5.2	5.8	14.3	4.5	Total syst. error	
		T2K Run 1-10, preliminary				T2K Run 1-1	Statistical error		

The description of neutrino-nucleus interactions is the dominant source of systematic uncertainty for oscillation measurements

Selection

Tomas Nosek @ ICHEP 2020 Deam NOvA Preliminary

v-beam

-10

-5

0

Total Prediction Uncertainty (%)

10

Neutrino cross-sections and oscillations

 Oscillation parameters are inferred from event spectra as a function of neutrino energy

Constrain flux + cross-section systematics with near detector

 But heavily rely on models to predict near-to-far detector extrapolation + neutrino energy smearing matrix

Neutrino cross-sections and oscillations

 Oscillation parameters are inferred from event spectra as a function of neutrino energy

Constrain flux + cross-section systematics with near detector

 But heavily rely on models to predict near-to-far detector extrapolation + neutrino energy smearing matrix

Same – but different!

Charged current channels essential for reliable flavor identification Same for most experiments!

- Their relative contribution varies across experiments (different **flux**)
- **Uncertainties** related to **nucleon**level processes

Nucleons are bound inside complex nuclei

CCQE

"Simplest" CC interaction

20.06.2023

Nucleons are bound inside complex nuclei

Nuclear effects

Fermi motion

Nucleons are bound inside complex nuclei

Nuclear effects

- Fermi motion
- Nuclear/optical potential

Nucleons are bound inside complex nuclei

CCQE ν_{μ} W

Nuclear effects

- Fermi motion
- Nuclear/optical potential
- Correlations between nucleons

Nucleons are bound inside complex nuclei

Nuclear effects

- Fermi motion
- Nuclear/optical potential
- Correlations between nucleons
- Interactions with the nuclear medium (Final State Interactions or FSI)

Nucleons are bound inside complex nuclei

Nuclear effects

- Fermi motion
- Nuclear/optical potential
- Correlations between nucleons
- Interactions with the nuclear medium (Final State Interactions or FSI)
 + so many targets (C, H, O, Ar), so little data...

+ different models for each type of interaction/effect/flavor

The role(s) of neutrino interaction generators

- Provide a (sufficiently) accurate **description** of neutrino-nucleus interactions
 - To be used as input model to oscillation analyses/model backgrounds
- **Compare** theoretical predictions to experimental measurements
 - To benchmark our models
- Propagate uncertainties related to the modelling of neutrino-nucleus crosssections

Neutrino interaction generators*

Nucl.Instrum.Meth.A 614 (2010) 87-104

How do generators work?

20.06.2023

Laura Munteanu (CERN) - IRN Neutrino, Nantes

Generators do a (reasonably) good job at predicting the cross-section for **inclusive** measurements

Generators do a (reasonably) good job at predicting the cross-section for **inclusive** measurements

... except at low q_0 (~15% of events) – more on that later!

But **none of them** offer a good quantitative prediction for (semi-)exclusive measurements

Lepton+hadron kinematics

Reaching the limits of our approximations

- Generators (often) factorize the process based on the plane wave impulse approximation (PWIA)
 - IA the neutrino interacts with an isolated nucleon.
 - PW the final state nucleon exits the nucleus as a plane wave.

How bad is it?

Model disagreement

These effects show up at forward scattering angles (low energy transfer) **PWIA breaks down**

Increasingly important for oscillation measurements

The curse of dimensionality

- We ask generators to give predictions for X dimensions
- But theory inputs are usually inclusive (Y dimensions)
- If X>Y assign the kinematics for remaining X-Y dimensions using a best guess approach!

Channel	What we ask from the generators	What theorists give us	
CCQE	$\frac{d^{5}\sigma}{dE_{l}dcos\theta_{l}dE_{N}dcos\theta_{N}dcos\theta_{lN}}$	$\frac{d^{5}\sigma}{dE_{l}dcos\theta_{l}dE_{N}dcos\theta_{N}dcos\theta_{lN}}$	
2p2p	$\frac{d^8\sigma}{dq_0dq_3d\boldsymbol{p_1}d\boldsymbol{p_2}}$	$\frac{d^2\sigma}{dq_0dq_3}$	
Resonant single meson production	$\frac{d^8\sigma}{dq_0dq_3d\boldsymbol{p_N}d\boldsymbol{p_\pi}}$	$\frac{d^2\sigma}{dQ^2dW}$	
Deep inelastic scattering	$\frac{d^N\sigma}{dxdy\prod_i d\boldsymbol{p_i}}$	$\frac{d^2\sigma}{dxdy}$	

The curse of dimensionality

- We ask generators to give predictions for X dimensions
- But theory inputs are usually inclusive (Y dimensions)
- If X>Y assign the kinematics for remaining X-Y dimensions using a best guess approach!

Channel	What we ask from the generators	What theorists give us	
CCQE	$\frac{d^5\sigma}{dE_l d\cos\theta_l dE_N d\cos\theta_N d\cos\theta_{lN}}$	$\frac{d^{5}}{dE_{l}d\cos\theta_{l}dE_{N}d\cos\theta_{N}d\cos\theta_{lN}}$	
2p2p	$\frac{d^{8}\sigma}{dq_{0}dq_{3}d\boldsymbol{p_{1}}d\boldsymbol{p_{2}}}$	$\frac{d^2}{dq_0 dq_3}$	
Resonant single meson production	$\frac{q^8\sigma}{dq_0dq_3d\boldsymbol{p}_Nd\boldsymbol{p}_{\boldsymbol{\pi}}}$	$\frac{d^2}{dQ^2dW}$	
Deep inelastic scattering	$\frac{d^N\sigma}{dxdy\prod_i d\boldsymbol{p_i}}$	$\frac{d^2}{dxdy}$	No.

What can we do about it?

- Consolidate strong ties with the theory community
 - Essential to iterate with theory developments as we make new, more exclusive measurements
- Take more data make more **exclusive** measurements!
- Continue improving our generators
 - More sophisticated models exist but are not implemented yet active effort!
- In the meantime, include sufficient freedoms in our analyses

Flexibility is key!

What can we do about it?

- Consolidate strong ties with the theory community
 - Essential to iterate with theory developments as we make new, more exclusive measurements

<u>G. Megias @ NuInt 2018</u>

Flexibility

- Future experiments (DUNE/HK) will have unprecedented levels of statistics at the ND
 - Sensitive to the most minute details in our simulations
- To prepare for future analyses we need to include significantly more freedom than we do in current analyses

Flexibility

Example for nuclear model

Examples:

Generating with an increased (but still motivated) phase space

Flexibility

Example for 2p2h

Examples:

Generating with an increased (but still motivated) phase space

SuSA v2 has better agreement with electron scattering data
Sharing the tools

- Generators use different file formats and often different internal conventions
 - Experimental tools are usually built around one generator
 - Swapping generators is difficult
- Several efforts to mitigate this problem:
 - Downstream: NUISANCE widely used tool to sythesize output from all generators and confront them to cross-section measurements
 - But loses interfacing with internal generator flux drivers/detector geometry packages
 - Upstream: Ongoing effort to develop a common format (NuHEPMC) which all generators would use

P01016

NUISANCE

Oui!

Parlez-vous

Sharing the tools

- Increasingly important as oscillation experiments are starting to perform joint fits
 - T2K+SK atmospherics easy to combine systematics since both use NEUT
 - T2K+NOvA extremely hard to combine systematics because T2K uses NEUT and NOvA uses GENIE (but some of the physics is the same!)
- First step towards sharing tools: recent agreement reached between DUNE+SBN experiment (ICARUS and SBND) to use the same base model and systematic error tools
 - Easier since all are GENIE-based
 - Work is shared among all collaborations

Towards better communication

- NuInt workshops
 - Essential role in interfacing between theory and experimental/generator community
 - Next one in spring 2024 in Brazil
- <u>NuSTEC</u>
 - Collaboration between theorists and experimentalists non exhaustive!
- Dedicated generator workshops:
 - TENSIONS, ECT*, Generators Workshop @ Fermilab...
- Communication with nuclear physics community
 - In particular, use of electron scattering data to benchmark models

Summary

- Neutrino-nucleus interaction uncertainties will be the dominant (limiting) source of systematic uncertainties for oscillation experiments
- The physics of these processes is complex and relies on neutrino interaction generator to provide a bridge between theory and experiments
- Current generators have come a long way, but are reaching the limits of their approximations
- Generators should be used to prepare for future experiments by including appropriate degrees of freedom in analyses
- Ongoing efforts to facilitate the communication between generators and their communities
- Imperative to ensure communication with theory community in this process

Thank you for your attention!

Supplementary slides

Neutrino interaction generators*

GENIE

- Arguably most widely-used
- Large active development team (collaboration)
- Support for experiment integration
- Primarily used by Fermilab-based experiments
- Has its own reweighting framework

NEUT

- Originally developed for cosmic neutrino backgrounds for proton decay
- Primarily used by T2K, SK, HK
- Closed-source (may change soon!)
- Small development team
- Has its own reweighting framework

*Most widely used by accelerator-based experiments

NuWro

- Wide range of available models
- Developed and maintained mostly by theorists
- Lack of reweighting framework
- Primarily used for comparisons to data

GiBUU

- Sophisticated quantum mechanical treatment of particle transport
- Very small development team
- Difficult to integrate with experimental suites

GiBUU

Neutrino interaction generators*

*Most widely used by accelerator-based experiments

Long-baseline oscillation experiments

	Experiment	Beam Energy	Baseline	Near detector	Far detector		
re Current	T2K	600 MeV (Narrow)	~300 km	Scintillator bars+water	Water Cherenkov		
		1.2 GeV (Wide)	~800 km	Plastic scintillator	Plastic scintillator		
	VPER	600 MeV (Narrow)	~300 km	Scintillator cubes + TBD	Water Cherenkov		
Futu	DUNE	2.5 GeV (Wide)	~1200 km	Argon TPC + C/H STT	Liquid Argon TPC + TBD		
Baseline Neutrino Beam							
20.06.2023 Laura Munteanu (CERN) - IRN Neutrino, Nantes							

Impact of ND constraint on FD spectra and errors

Step 25 20 15 10 10 5 00 0.2 0.4 0.6	^{sub} 2 ²⁵ <i>ν</i> μ Pre-ND ²⁰ <i>ν</i> μ Post-ND ¹⁵ <i>σ</i> ¹⁶				^{ug} ^{ug} ^{ug} ^{ug} ^{ug} ^{ug} ^{ug} ^{ug}				
Before ND 1. Error source (units: %)	1 FHC	R RHC	$\frac{\rm MR}{\rm FHC~CC1}\pi^+$	FHC	RHC	1 Re FHC CC1 π^+	FHC/RHC		
Flux	5.0	4.6	5.2	4.9	4.6	5.1	4.5		
Cross-section (all) SK+SI+PN	15.8	13.6	10.6	16.3	3.0	14.7	10.5		
SK+SI+II	2.0	2.2	4.0	0.1	0.5	15.0	1.5		
Total All	16.7	14.6	12.5	17.3	14.4	20.9	11.6		

T2K Run 1-10, preliminary

Impact of ND constraint on FD spectra and errors

	ND fit	ND ND 10 ND 8 6 4 2 1.4 inergy [GeV]	^{vy} ^{vy} ^{vy} ^{vy} ^{vy} ^{vy} ^{vy} ^{vy}					
refore		1	R	MR			$1 \mathrm{R}e$	
Bei	Error source (units: %)	FHC	RHC	FHC CC1 π^+	FHC	RHC	FHC CC1 π^+	FHC/RHC
	Flux	5.0	4.6	5.2	4.9	4.6	5.1	4.5
	Cross-section (all)	15.8	13.6	10.6	16.3	13.1	14.7	10.5
	SK+SI+PN	2.6	2.2	4.0	3.1	3.9	13.6	1.3
	Total All	16.7	14.6	12.5	17.3	14.4	20.9	11.6

T2K Run 1-10, preliminary

Impact of ND constraint on FD spectra and errors

20.06.2023

Laura Munteanu (CERN) - IRN Neutrino, Nantes

T2K Run 1-10, preliminary

20.06.2023

Laura Munteanu (CERN) - IRN Neutrino, Nantes

T2K Run 1-10, preliminary

20.06.2023

Multiple ground state models are available in neutrino interaction generators

- Multiple ground state models are available in neutrino interaction generators
- RFG assumes the nucleus is a "box"-like potential and nucleons behave like a Fermi gas
 - Simplistic, widely used in the early days of neutrino oscillations, low predictive power

- Multiple ground state models are available in neutrino interaction generators
- RFG assumes the nucleus is a "box"-like potential and nucleons behave like a Fermi gas
 - Simplistic, widely used in the early days of neutrino oscillations, low predictive power
- LFG includes a radial dependence to the potential, but remains a Fermi gas approach
 - Better predictive power than RFG, allows to explore other models

- Multiple ground state models are available in neutrino interaction generators
- RFG assumes the nucleus is a "box"-like potential and nucleons behave like a Fermi gas
 - Simplistic, widely used in the early days of neutrino oscillations, low predictive power
- LFG includes a radial dependence to the potential, but remains a Fermi gas approach
 - Better predictive power than RFG, allows to explore other models
- Benhar SF is a more sophisticated model
 - Accounts for nuclear shell structure
 - Tuned to electron scattering data
 - Good predictive power for final state particles (but not perfect!)

- Multiple ground state models are available in neutrino interaction generators
- RFG assumes the nucleus is a "box"-like potential and nucleons behave like a Fermi gas
 - Simplistic, widely used in the early days of neutrino oscillations, low predictive power
- LFG includes a radial dependence to the potential, but remains a Fermi gas approach
 - Better predictive power than RFG, allows to explore other models
- Benhar SF is a more sophisticated model
 - Accounts for nuclear shell structure
 - Tuned to electron scattering data
 - Good predictive power for final state particles (but not perfect!)
- More sophisticated models exist but are not yet implemented in generators (ongoing work)

How does the nuclear ground state impact experiments?

- Most nuclear models predict removal energies which vary in a range of **10-50 MeV**
- Nucleon momenta span ranges of up to hundreds of MeV
- Mismodelling the removal energy causes a direct bias in reconstructed neutrino energy
 - Particularly important for oscillation measurements which evolve as a function of neutrino energy
 - But also for lower-energy physics (e.g. BSM physics)

How does the nuclear ground state impact experiments?

- Most nuclear models predict removal energies which vary in a range of 10-50 MeV
- Nucleon momenta span ranges of up to hundreds of MeV
- Mismodelling the removal energy causes a direct bias in reconstructed neutrino energy
 - Particularly important for oscillation measurements which evolve as a function of neutrino energy
 - But also for lower-energy physics (e.g. BSM physics)
- Mismodelling the nucleon momentum alters predictions on hadron kinematics
 - Will be crucial for experiments sensitive to the hadronic side of the final state

SRCs or "correlated tail" effects become important at nucleon momenta of O(200-700 MeV)

	Example	from T2K	2018	
		Type of Uncertainty	$\nu_e/\bar{\nu}_e$ Candidate Relative Uncertainty (%)	nature
Arbitrary units	14 12 0.1 08 06 04 04	Super-K Detector Model	1.5	
		Pion Final State Interaction and Rescattering Model	1.6	
		Neutrino Production and Interaction Model Constrained by ND280 Data	2.7	
		Electron Neutrino and Antineutrino Interaction Model	3.0	
		Nucleon Removal Energy in Interaction Model	3.7	
	0.02	Modeling of Neutral Current Interactions with Single γ Production	1.5	THEMIRROR
	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	Modeling of Other Neutral Current Interactions	0.2	CRACKI
	Nucleon momentum [GeV/c]	Total Systematic Uncertainty	6.0	An indication of matter-antimatter symmetry violation in neutrinos

The systematic uncertainty on the predicted relative number of electron neutrino and electron antineutrino candidates in the SK samples with no decay electrons.

Nature volume 580, pages 339-344 (2020)

40.00.4045

Ongoing work on DUNE

- DUNE is preparing oscillation sensitivity studies focused on its near detectors
- At DUNE statistics, we will be sensitive to some of the most minute differences in nuclear models
- DUNE doesn't have data yet
 - Need a flexible model which allows us to cover the variations suggested by other models and measurements
- Need a model which is adapted for both oscillation studies and BSM physics

The base model

- The DUNE production framework is optimized to use the GENIE event generator
- GENIE does not have a 2D spectral function model yet
- But want to take inspiration from what we've learned from T2K

The base model

- The DUNE production framework is optimized to use the GENIE event generator
- GENIE does not have a 2D spectral function model yet
- But want to take inspiration from what we've learned from T2K

63

p_{miss} (MeV/C)

For an LFG model, the dependence between the removal energy and the nucleon momentum is well-understood (Fermi gas approach)

For an LFG model, the dependence between the removal energy and the nucleon momentum is well-understood (Fermi gas approach)

Covers relevant energies for Argon nuclear shells!

Will be used in conjunction with "correlated tail" feature

 p_{miss}

Laura Munteanu (CERN) - IRN Neutrino, Nantes

- Will be used in conjunction with "correlated tail" feature
- Probes nucleon correlations high model disagreement

• Will be used in conjunction with "correlated tail" feature

- CCQE(-like) interactions are easiest to study experimentally
 - Main channel for Hyper-K and future SBN experiments (ICARUS, SBND)
 - And provide a gateway towards understanding more complex processes relevant at DUNE energies
- But the work is just getting started! We need to understand:

- CCQE(-like) interactions are easiest to study experimentally
 - Main channel for Hyper-K and future SBN experiments (ICARUS, SBND)
 - And provide a gateway towards understanding more complex processes relevant at DUNE energies
- But the work is just getting started! We need to understand:
 - Final state interactions (hadron transport inside the nucleus)
 Diag in agaillation param

Bias in oscillation parameters if 20% of proton energy were carried away by neutrons FSI-like effect

- CCQE(-like) interactions are easiest to study experimentally
 - Main channel for Hyper-K and future SBN experiments (ICARUS, SBND)
 - And provide a gateway towards understanding more complex processes relevant at DUNE energies
- But the work is just getting started! We need to understand:
 - Final state interactions (hadron transport inside the nucleus)
 - Cross-section energy dependence

- CCQE(-like) interactions are easiest to study experimentally
 - Main channel for Hyper-K and future SBN experiments (ICARUS, SBND)
 - And provide a gateway towards understanding more complex processes relevant at DUNE energies
- But the work is just getting started! We need to understand:
 - Final state interactions (hadron transport inside the nucleus)
 - Cross-section energy dependence
 - Resonant interactions and the deep inelastic regime

DIS-enriched measurement from MINERvA High model disagreement
Beyond the nuclear ground state

- CCQE(-like) interactions are easiest to study experimentally
 - Main channel for Hyper-K and future SBN experiments (ICARUS, SBND)
 - And provide a gateway towards understanding more complex processes relevant at DUNE energies
- But the work is just getting started! We need to understand:
 - Final state interactions (hadron transport inside the nucleus)
 - Cross-section energy dependence
 - Resonant interactions and the deep inelastic regime
 - How nuclear effects vary with atomic number

Beyond the nuclear ground state

- CCQE(-like) interactions are easiest to study experimentally
 - Main channel for Hyper-K and future SBN experiments (ICARUS, SBND)
 - And provide a gateway towards understanding more complex processes relevant at DUNE energies
- But the work is just getting started! We need to understand:
 - Final state interactions (hadron transport inside the nucleus)
 - Cross-section energy dependence
 - Resonant interactions and the deep inelastic regime
 - How nuclear effects vary with atomic number
 - Differences in v_e vs v_{μ} cross-sections (**crucial for** δ_{CP} !)*

Majority of the systematic error contribution

*Leading uncertainties from nuclear ground state model!

Capabilities of the ND280 Upgrade

• Full 4π angular coverage (same as SK)

Capabilities of the ND280 Upgrade

- Full 4π angular coverage (same as SK)
- Low momentum thresholds for detecting protons
 - Can realiably measure full final state in neutrino interactions!

Capabilities of the ND280 Upgrade

- Full 4π angular coverage (same as SK)
- Low momentum thresholds for detecting protons
 - Can realiably measure full final state in neutrino interactions!
- Capability to measure (not just tag!) neutrons
 - Unmatched by Liquid Argon TPCs

- Access to exclusive variables
 - E.g. probe nuclear effects by looking at Transverse Kinematic Imbalance (TKI)

Access to exclusive variables

Laura Munteanu (CERN) - IRN Neutrino, Nantes

- Access to exclusive variables
 - E.g. probe nuclear effects by looking at Transverse Kinematic Imbalance (TKI)

Antineutrinos: Peak from interactions on hydrogen

No nuclear effects

Possible thanks to **neutron detection**!

Access to exclusive variables

 \vec{p}_{ν}

 $\vec{q}_{\mathrm{T}} = -\vec{p}_{\mathrm{T}}^{\ell'}$

 $\delta \alpha_{\rm T}$

δp

- Access to exclusive variables
 - E.g. probe nuclear effects by looking at Transverse Kinematic Imbalance (TKI)

$$E_{vis} = E_{\mu} + T_N$$

Method used by NOvA & DUNE

Using calorimetric estimators for neutrino energy

- Access to exclusive variables
 - E.g. probe nuclear effects by looking at Transverse Kinematic Imbalance (TKI)
 - Using calorimetric estimators for neutrino energy
- Significantly improve constraints on systematic error parameters for oscillation analyses
- Help build more robust analyses
- Give us **novel measurements**!

----- FGD1+2

SFGD+FGD1+2 µ only

— SFGD+FGD1+2 μ+N

- P Shell MF Norm C
- S Shell MF Norm C
- ------ SRC Norm C
- P Shell MF p_{miss} Shape C
- S Shell MF p_{miss} Shape C

Precision measurements of δ_{CP}

- Measuring CP violation (CPV) \neq measuring δ_{CP}
- If no CPV in neutrino oscillations: exclude matter-antimatter asymmetry explanation through lepton sector CPV
- If CPV is observed: we can constrain leptogenesis models
 - But need **precise** measurement of δ_{CP} !
- Model separation power vs δ_{CP} resolution:
 - Satisfactory: $\sigma(\delta_{CP}) < 30^{\circ}$
 - Good: $\sigma(\delta_{CP}) < 23^{\circ}$
 - Excellent: $\sigma(\delta_{CP}) < 5^{\circ}$

Eur. Phys. J. C 78 (2018) no.9, 709

Hyper-K and

DUNE target

Collected T2K data

Samples: $CC0\pi 0p$

Samples: $CC0\pi Np$

Samples: $CC1\pi$

Samples: CCOther

20.06.2023

20.06.2023

20.06.2023

T2K Bi-probability plot

Antineutrino mode e-like candidates

T2K-NOvA joint fit

T2K+SK Atospherics Joint Fit

DUNE interaction model

- The expansion of the ground state model is part of a broader effort to increase the flexibility of our analyses
- Interaction model choices:
 - Valencia 1p1h model for CCQE interactions
 - Z-expansion form factor
 - SuSAv2 2p2h
 - Berger-Sehgal for Resonant interactions
 - Bodek-Yang DIS
 - hA2018 for hadronization
- Each of these parts of the model requires the development of systematic uncertainties tailored to DUNE-era statistics

