

Neganov-Luke light detectors for double-beta decay experiments

Vladyslav Berest

INR Neutrino meeting 19-20 June 2023

Why do we need new technologies for LDs?

CUPID

CUPID - proposed next-generation 0v2b bolometric experiment that will use CUORE infrastructure with background level 100 times lower at the ROI

CUORE background $-$ Total α $B + y$ 10^o 10^{-} $130Te$ $10²$ **CUORE Preliminary** Energy (keV)

- Reject α background with **scintillating bolometers** (high-performing light detectors for effective rejection)
- Mitigate γ background by moving from α Absorber ¹³⁰Te to ¹⁰⁰Mo (Q_{BB}=3034keV)

CUPID

Random coincidence of 2 ν 2 β events (T_{1/2}^{2 ν 2 β =7.1×10¹⁸ y)}

Pile-ups could be rejected by pulse shape but required:

- Improve noise level in the heat and light channels
- Improve sensitivity and speed acting on sensor features
- Widen electronics bandwidth and increase sampling rate
- Investigate machine learning techniques
- Improve S/N and/or speed of light detectors by technological upgrades

- **Minimization of the signal rise-time**
- **Improving of baseline RMS**

The necessity of the light detectors technological upgrade

Neganov-Luke technology

$$
E_{tot} = E_0 \left(1 + \frac{q \cdot V_{el} \cdot \eta}{\epsilon} \right) = E_0 \cdot G_{NTL}
$$

W

 E_{0} : Energy of the ionizing particle ε: Average energy required to generate an electron-hole pair q: elementary charge V_{el} : Potential between the electrodes η: Amplification efficiency G_{NTL} : Gain

Possible difficulties

W

Possible difficulties

W

Possible difficulties

First tests in IJCLab, Orsay

In the past, a lot of circular NTL LDs were produced in France for R&D, with good results obtained:

Tests of different electrodes geometries

"Concentric" geometry

 $(1st$ electrode set

2nd electrode set)

- 45x45x0.3 mm³ square HP Ge wafers
- 200 nm Al electrodes deposited on planar surface with photolithography by lift-off method
- 200 μm width electrodes with a 3.8 mm gap between them
- Maximum voltage **35V**
- Effective **gain ~7**

• 45x45x0.3 mm³ square HP Ge wafers

 $(1st electrode)$

- 200 nm Al electrodes deposited on planar surface with photolithography by lift-off method
- 2 x 200 μm width meandering electrodes with a 3.8 mm gap between them
- Maximum voltage **15V**
- Effective **gain ~4.6**

"Meander" geometry

Tests of different electrodes geometries

"Edge" geometry

- 45x45x0.3 mm³ square HP Ge wafers
- 200 nm Al electrodes deposited on the edges
- Low electric field into the Ge \rightarrow Allows higher NTL voltage
- Maximum voltage **190V**
- Effective **gain ~7**
- 45x45x0.3 mm³ square HP Ge wafers
- 200 nm concentric circular Al electrodes deposited on planar surface using evaporation
- Maximum voltage **>170V**
- Effective **gain ~9**

"Circular" geometry

(2nd electrode set)

- The tower consists of 10 light detectors and 10 crystals (6 Li₂100MoO₄) and the set of the set and 4 TeO₂
- **10 identical NL light detectors** were produced using evaporation: circular concentric electrodes on square Ge wafers 0.3mm thickness
- Structure installed in Canfranc underground laboratory in **February 2023**

• First measurements with **0V NL bias** to check the initial performance of light detectors:

• Sigma baseline **<85 eV** is enough to have a more then 99% alpha rejection

• 9/9 light detectors are working well at **50V NL bias**: good noise, no leakage current

Sigma baseline 50V

W

• Distribution for pile-ups rejection

Not optimal electrodes geometry

- Geometry of electrodes not optimized: for square light detectors with circular masks that were available at the moment
- Electrodes connected inside the circle, no field outside, **56%** of the surface under bias

$$
\sigma_{projected} = \frac{\sigma_{measured}}{AreaFactor}
$$

$$
AreaFactor = \frac{Gain_{square}}{Gain_{circular}} = 1.79 - 0.79/Gain_{circular}
$$

Aboveground measurement at IJCLab, Orsay

$$
AreaFactor_{estim}=1.5
$$

$$
\left\lceil \left(\frac{Gain_{square}}{Gain_{circular}} \right)_{meas} = 1.4 \right\rceil
$$

- Neganov-Luke light detectors are a promising technology to **increase the signal to noise** ratio and so to help to the **pile-up rejection**
- We are very reproducible in terms of production high performing NL light detectors. (**9/9 detectors operating at 50V** at Canfranc underground laboratory)
- With 50V NL bias we can reach **mean value of sigma baseline of 17.6 eV**
- Demonstrated that **BI<1×10-4 count/keV∙kg∙y is reachable** even in not optimal electrodes configuration at 50V NL voltage
- Aboveground measurements **confirmed scalability** of NL gain due to changing of electrodes geometry
- **This technology has been recently selected to become the new baseline for CUPID light detectors**

Thank you for attention!

Backups

An innovative detector assembly

- Minimize the amount of passive material
- Active shielding using the light detector position

Geometrical reduction of the surface radioactivity

+ compact assembly for anticoincidence cuts

BINGO

A cryogenic active veto

Made of scintillators (BGO) with \bullet a 4π coverage operated at 20 mK Scintillation light read by its own light detectors

Suppress the external Y background and reject surface radioactivity from the crystals facing the active shield using anti-coincidence

Neganov-Trofimov-Luke light detectors

- **Higher signal to noise ratio** \bullet
	- \rightarrow lower energy threshold= efficient suppression of external y background with the veto
	- \rightarrow Reject the background induced by the $2\nu\beta\beta$ pileup events in **LMO**
- **Amplification of the tiny** Cerenkov signal (TeO₂)

 $\rightarrow \alpha$ rejection

BINGO

If the 2615 keV γ deposit a small amount of energy in the surrounding material (\sim 80 keV) and the rest in TeO2 \rightarrow background in ROI

With the veto, the γ interact within it before and emit scintillation light which is detected by the LD \rightarrow rejected by anticoincidence

We estimated a conservative energy threshold to reach in the veto of about 50 keV (~hundreds of eV in the LD) \rightarrow NTL amplification on LD will help to reach it

Evaporation of 20 nm a-Ge:H + 200 nm Al

Deposition of 20 nm a-Ge:H + 200 nm Al

IPI Ge wafer