HKROC: a modern waveform digitizer for PMT-based experiments

Denis Carabadjac

dcarabadjac@llr.in2p3.fr

Laboratoire Leprince-Ringuet (LLR)

Commissariat à l'énergie atomique et aux énergies alternatives (CEA)

IRN neutrino meeting 20.06.2023

History

- **HKROC** an ASIC designed readout chip of the PMT signal
- HKROC was developed as PMT readout chip for Hyper-Kamiokande experiment, however another solution was chosen for main PMT readout

History

- **HKROC** ASIC designed read out chip of the PMT signal
- HKROC was developed as PMT readout chip for Hyper Kamiokande experiment, however other solution was chosen for main PMT readout

- Derived from the **HGCROC** chip originally designed for the CMS High Granularity Calorimeter
- Designed for HK use chip has extremely high performance characteristics. It can be adapted to different PMT experiments and optimised for different photodetectors

Modern PMT-based experiments physics program

() in brackets HK requirements are written

Strong requirements on electronics

Physics constraint	Impact on electronics requirement
Detect synchronous or asynchronous events (e.g. accelerator or solar neutrino)	Self triggering for each channel
No event loss (e.g. crucial for SN neutrino)	High hit rate (e.g. 1 MHz)
Low evergy events detection (e.g. SN or solar neutrino)	Low charge threshold triggering (e.g. <= 1/6 p.e.)
Charge reconstruction from low to high energy physics	Large dynamic charge range $(1 - 1300)$ photoelectrons
Excellent charge reconstruction	High linearity (${\sim}1$ %) and resolution (~1%)
Electronics time resolution < PMT time resolution (1.3 ns)	High timing resolution (e.g. < 0.3 ns)
Low power consumption	~1 W/channel

Introduction

Physics constraint	Impact on electronics requirement
Detect synchronous or asynchronous events (e.g. accelerator or solar neutrino)	Self triggering for each channel
No event loss (e.g. crucial for SN neutrino)	High hit rate (e.g. 1 MHz)
Low evergy events detection (e.g. SN or solar. neutrino)	Low charge threshold triggering (e.g. <= 1/6 p.e.)
Charge reconstruction from low to high energy physics	$\begin{array}{c} \mbox{High dynamic charge range} \left(1-1300\right) \\ \mbox{photoelectrons} \end{array}$
Excellent charge reconstruction	High linearity (\sim 1 %) and resolution (\sim 1%)
Electronics time resolution < PMT time resolution (1.3 ns)	High timing resolution (e.g. < 0.3 ns)
Low power consumption	~1 W/channel

Carabadjac Denis (LLR/CEA)

Introduction

Physics constraint	Impact on electronics requirement	
Detect synchronous or asynchronous events (e.g. accelerator or solar neutrino)	Self triggering for each channel	
The challenge was taken up	High hit rate (e.g. 1 MHz)	
	Low charge threshold triggering (e.g. <= 1/6 p.e.)	
	$\begin{array}{c} \mbox{High dynamic charge range} \left(1-1300\right) \\ \mbox{photoelectrons} \end{array}$	
	High linearity (\sim 1 %) and resolution (\sim 1%)	
Electronics time resolution < PMT time resolution (1.3 ns)	High timing resolution (e.g. < 0.3 ns)	
Low power consumption	~1 W/channel	

Carabadjac Denis (LLR/CEA)

OMEGA, AGH, LLR and CEA present

Advanced ASIC chip for PMT readout

 HKROC is a waveform digitizer: reconstructs the full shape of the charge-signal waveform and provides extremely precise timing measurement.

 HKROC is a waveform digitizer: reconstructs the full shape of the charge-signal waveform and provides extremely precise timing measurement.

Carabadjac Denis (LLR/CEA)

IRN meeting - June 20th, 2023

Part I: General description

I2C

Thresholds

Tunings

1 HKROC = 36 channels = 12 PMT

- Low power: 10 mW per channel •
- Large dynamic range with 3 gains (up to 2500 pC)
- Integrated timing measurements (25 ps binning)
- Readout with high speed links (1,28 Gb/s) ٠
- HKROC is a waveform digitizer with auto-trigger •

Part I: General description

I2C

Thresholds

- Low power: 10 mW per channel •
- Large dynamic range with 3 gains (up to 2500 pC)
- Integrated timing measurements (25 ps binning)
- Readout with high speed links (1,28 Gb/s) ٠
- HKROC is a waveform digitizer with auto-trigger •

1 HKROC = 36 channels = 12 PMT

Details on charge and timing performance see on the next slides

Tunings

Operating principle

After preamplification signal follows two paths:

Operating principle

After preamplification signal follows two paths:

• A fast path with a discriminator connected to the TDC for time measurement (dead time 30 ns)

Part I: General description

Operating principle

After preamplification signal follows two paths:

- A fast path with a discriminator connected to the TDC for time measurement (dead time 30 ns)
- A slow path with shapers connected to the ADC for charge measurement

The PA signal is sent to a low offset **Part I: General description** discriminator which allows to auto trigger on the signal above a set **Operating principle** threshold. After preamplification signal follows two paths: Amplitude Srmation 5.0 A fast path with a discriminator connected to the 2.5 TDC for time measurement (dead time 30 ns) 0.0 A slow path with shapers connected to the ADC for 10 20 \bullet charge measurement 20 counts TDC Shapes the PA output signal to allow the PA charge measurement, to optimize the signal-to-noise ratio and use the full SH

100

PA output

50

Shaper output PMT waveform

80

60

30

Time [ns]

80 ns

40

Time [ns]

30 ns

20

40

60

Part II: Trigger efficiency

Trigger efficiency 100% for threshold 1/6 p.e @ charges >=1/4 p.e. Noise level: $<\frac{1}{22} p.e$

	One channel injection	Multichannel injection
Normal mode	1200 kHz	415 kHz
SN mode	2600 kHz	950 kHz

• The HKROC digitizer saturation naturally appears when the chip internal memory is full.

• The chip has **one** independent memory for each read-out link at 1.28 Gb/s, which gathers **3 PMTs**.

Reconstruction method

Calibrate each channel of the digitizer with one charge – build a **reference waveform**

$$\chi^2(q)$$

Reconstruction method

Part III: Charge reconstruction

Part V: Cross-talk

Part V: Cross-talk

• There is a "diffuse" XT bettween all channels

- Positive amplitude level of XT is about 0.07 p.e. of injected charge
- Very small, but even next version reduce it by factor of 3

Part V: Cross-talk

• The same linearity and resolution as without XT

5

¹⁰ True charge [p.e.]

15

20

15

10

True charge [p.e.]

20

HKROC is an extremely precise digitizer:

- Autotrigger mode
- Charge linearity: ~ $\pm 1\%$ from 1 to 1250 p.e
- Charge resolution: $< 0.1 p. e @ \le 10 p. e and ~1\%$ for charges > 10 p. e.
- Time resolution: **200** ps @1 p.e. and \leq **60** ps for charges > 10 p.e.
- Hit rate: 950 kHz in SN mode
- Dead-time: **30 ns**

HKROC-based electronics will provide a versatile, accurate, and fully integrated solution for PMT-based experiments

Close XT

Close XT depending on charge

Noise trigger rate (acq_time = 10.0s)

Carabadjac Denis (LLR/CEA)

