

Neutrino nonradiative decay and the diffuse supernova neutrino background

PILAR IVÁÑEZ BALLESTEROS (SHE/HER)

SUPERVISED BY: DR. M. C. VOLPE

APC – UNIVERSITÉ PARIS CITÉ

Outline

P. Iváñez-Ballesteros and M. C. Volpe, Phys. Rev. D 107, 023017 (2023) arXiv:2209.12465

1. DSNB FLUX WITHOUT DECAY:

- Emission from a single SN
- Fraction of BH-forming collapses
- Supernova Rate (SNR)
- 2. NEUTRINO NON-RADIATIVE DECAY: three-flavour description
 - Normal Ordering: Quasi-Degenerate (QD) and Strongly Hierarchical (SH) case
 - Inverted Ordering

3. PREDICTIONS OF THE DSNB WITH/WITHOUT DECAY

SK-Gd, HK, JUNO, DUNE

General context

- Most of the gravitational binding energy ($\sim 10^{53}$ erg) released as neutrinos (99 %)
- These neutrinos provide information about the SNe explosion dynamics, neutrino properties, ...

Core-Collapse Supernovae (CCSNe) are <u>very rare</u> in our galaxy (1-3 per century)

SN 1987A: first detection of this neutrino burst. [Hirata *et al.*, 1987] [Bionta *et al.*, 1987] [Alekseyev *et al.*, 1988]

> Evolution of SN 1987A. Hubble Space Telescope https://www.esa.int/About_Us/ESAC/The_evolution_of_SN_1987A

The Diffuse Supernova Neutrino Background (DSNB)

DSNB: all neutrinos and antineutrinos emitted by <u>all past CCSNe in</u> <u>the observable Universe</u>.

Current upper limits for the DSNB flux:

• SK I-IV data: 2.6 $\bar{\nu}_e$ cm⁻² s⁻¹ (E_{ν} > 17.3 MeV)

[Abe et al., 2021]

SNO data: 19 ν_e cm⁻² s⁻¹ (E_{ν} \in [22.9, 36.9] MeV) [Aharmin *et al.*, 2006]

• SK data: $10^3 v_x \text{ cm}^{-2} \text{ s}^{-1} (\text{E}_v > 19.3 \text{ MeV})$ [Lunardini and Peres, 2008] Dark Matter detectors: $10 v_x \text{ cm}^{-2} \text{ s}^{-1}$ [Suliga *et al.*, 2022]

Best-fit values associated to different models, the expected sensitivities for the DSNB fluxes and the 90% CL upper limits for the SK-I-II-III-IV data.

[Abe et al., 2021]

The Diffuse Supernova Neutrino Background (DSNB)

$$\phi_{\nu}(E) = \int_{0}^{z_{max}} \frac{dz}{H(z)} \int_{8 M_{\odot}}^{125 M_{\odot}} dM \, \dot{R}_{SN}(z, M) F_{\nu}(E', M)$$
$$E' = E(1+z)$$

see e.g. [Beacom, 2010], [Priya and Lunardini, 2017], [de Gouvêa et al., 2020], ...

•DSNB flux depends on:

- $\Box \operatorname{Cosmology} \to H(z)$
- □ Astrophysics → Supernova rate $R_{SN} \propto$ Star Formation Rate (SFR)
- \Box Neutrino properties \rightarrow Mass ordering, matter effects (MSW), new properties...

GOAL

Investigate what one might learn about <u>neutrino decay</u> through the <u>upcoming observation</u> of the DSNB when considering a <u>detailed astrophysical model</u> in a <u>three-flavour</u> neutrino framework.

DSNB flux without decay

PROGENITOR DEPENDENCE AND SUPERNOVA RATE (SNR)

Neutrino emission from a single SN: $F_{\nu}(E, M)$

• Neutrino flux <u>at the neutrinosphere</u> can be parametrised by: [Keil *et al.*, 2003]

$$F_{\nu}^{0}(E) = \frac{L_{\nu}}{\langle E_{\nu} \rangle} \frac{(\alpha_{\nu} + 1)^{\alpha_{\nu} + 1}}{\langle E_{\nu} \rangle \Gamma(\alpha_{\nu} + 1)} \left(\frac{E}{\langle E_{\nu} \rangle}\right)^{\alpha_{\nu}} \exp\left[-(\alpha_{\nu} + 1)\frac{E}{\langle E_{\nu} \rangle}\right]; \nu = \nu_{e}, \bar{\nu}_{e}, \nu_{\chi}$$

 L_{ν} : luminosity (~ 10⁵² erg) $\langle E_{\nu} \rangle$: average energy (~ 12 - 18 MeV)

 α_{ν} : pinching parameter, function of $\langle E_{\nu} \rangle$ and $\langle E_{\nu}^2 \rangle$ (~ 2 – 3)

[Wolfenstein, 1978] • Mikheev-Smirnov-Wolfenstein (MSW) effect: [Mikheev, Smirnov, 1986] Describes the <u>flavour transformations</u> due to the ν -matter interactions. We have assumed to be <u>adiabatic</u> $\rightarrow F_{\overline{\nu}_l} = F_{\overline{\nu}_e}^0$; $F_{\overline{\nu}_i} = F_{\overline{\nu}_h} = F_{\nu_x}^0$ Flavour conversion in SNe still under study: shock wave effects, $\nu - \nu$ interactions... see e.g. the review Volpe (2023)

Contribution from Black Hole-Forming Collapses

Fraction of BH, f_{BH} : fraction of "failed" collapses, i.e. they end up forming a BH.

BH-forming collapses (BHFC) emit a hotter neutrino spectrum than NS-forming collapses (NSFC).

To model the DSNB flux, we used templates from 1D SN simulations from the Garching group. [Hudepohl, 2013]

The Supernova Rate, $\dot{R}_{SN}(z, M)$

 $= (1.25 \pm 0.5) \times 10^{-4} \text{ yr}^{-1} \text{Mpc}^{-3} \implies \text{In the figure, the band indicates the <u>uncertainty</u> of the SNR normalisation}$

DSNB flux on Earth in absence of ν decay

$$\phi_{\nu}(E) = \int_{0}^{z_{max}} \frac{dz}{H(z)} \int_{8 M_{\odot}}^{125 M_{\odot}} dM \, \dot{R}_{SN}(z, M) F_{\nu}(E', M)$$
$$E' = E(1+z)$$

Results for the integrated flux in $\text{cm}^{-2}\text{s}^{-1}$ for the fiducial case ($f_{BH} = 0.21$) and the most optimistic case ($f_{BH} = 0.41$) in brackets:

	ΝΟ	Ю	UPPER LIMITS
$\overline{oldsymbol{ u}}_{e}$ ($E_{ u} > 17.3 \; { m MeV}$)	0.77 ± 0.30 [1.02 ± 0.41]	0.63 ± 0.25 [0.75 ± 0.3] [Abe	2.6 (SK) e et al., 2021]
ν _e (22.9 < E < 36.9 MeV)	0.20 ± 0.08 [0.24 ± 0.09]	0.18 ± 0.08 [0.23 ± 0.09] [Aharmir	19 (SNO) 1 et al., 2006]

IRN NEUTRINO MEETING - 20TH JUNE 2023

Previous studies:

• Fogli et al. (2004): three-flavour decay but without detailed astrophysical ingredients

e.g.: progenitor dependence and normalisation uncertainty

 de Gouvêa et al. (2020), Tabrizi and Horiuchi (2021): <u>two-flavour approximation</u> and only considered one mass pattern (NO).

Non-radiative neutrino decay

$$\nu_j \longrightarrow \nu_i (\overline{\nu}_i) + X$$

where $m_i > m_i$ and X is a very light (pseudo)scalar particle (e.g. Majoron).

Neutrino fluxes deplete over a distance *L* due to decay by a factor: $\exp\left(-\frac{m_i L}{\tau_i E}\right)$

DSNB has <u>unique sensitivity</u> to this decay in the range:

$$\frac{\tau}{m} \in \left[10^9 - 10^{11}\right] \text{s/eV}$$

Sensitivities to the lifetime-to-mass ratio, τ/m , of different neutrino experiments.

Figure adapted from Fig. 1 of Picoreti et al. (2022).

DSNB flux in the presence of decay

Solution to the neutrino kinetic equations in the presence of decay:

$$\nu_j \longrightarrow \nu_i (\overline{\nu}_i) + X$$

Quasi-degenerate (QD) masses $m_i \simeq m_i \gg \Delta m$

•
$$\psi_{\nu_j \to \nu_i}(E_j, E_i) = \delta(E_j - E_i)$$

•
$$\psi_{\nu_j \to \overline{\nu}_i}(E_j, E_i) = 0$$

* $\psi_{\nu_j \to \nu_i}(E_j, E_i) = \operatorname{Prob}[\nu_j(E_j) \to \nu_i(E_i)]$

Strongly Hierarchical (SH) masses $m_j \gg m_i \simeq 0$ • $\psi_{\nu_j \rightarrow \nu_i}(E_j, E_i) = \frac{2E_i}{E_j^2}$ • $\psi_{\nu_j \rightarrow \overline{\nu}_i}(E_j, E_i) = \frac{2}{E_j}\left(1 - \frac{E_i}{E_j}\right)$

Mass patterns

DSNB flux with ν decay: results for NO, QD case

DSNB flux with ν decay: results for NO, QD case

DSNB flux with ν decay: results for NO, SH case

Mass patterns

DSNB flux with ν decay: results for IO case

DSNB flux with ν decay: results for IO case

Predictions of the DSNB with/without decay

IRN NEUTRINO MEETING - 20TH JUNE 2023

Detection of the DSNB

- Detection of $\bar{\nu}_e$ flux \rightarrow **Inverse Beta Decay** (IBD)
 - $\bar{\nu}_e + p \rightarrow n + e^+$
 - Super-Kamiokande + Gd, Hyper-Kamiokande, JUNO
 - > Backgrounds: reactor $\overline{\nu}_e$ (low energies) and atmospheric ν (high energies)
- Detection of v_e flux \rightarrow **neutrino absorption in** ⁴⁰Ar

 $\nu_e + {}^{40} Ar \rightarrow {}^{40} K^* + e^-$

- Deep Underground Neutrino Experiment (DUNE)
- > Backgrounds: solar neutrinos (low energies) and atmospheric v_e (high energies)

Expected number of events after **10 years of exposure at SK-Gd**. The experimental window is **12**. **8** $\leq E_{\nu} \leq$ **30**. **8 MeV**. The bands represent the uncertainty of the SNR normalisation.

Expected number of events after 20 years of exposure at HK-Gd. The experimental window is $17.3 \le E_{\nu} \le 31.3$ MeV. The bands represent the uncertainty of the SNR normalisation.

Events at JUNO

Expected number of events after **20 years of exposure at JUNO**. The experimental window is **11**. $3 \le E_{\nu} \le 33.3$ MeV. The bands represent the uncertainty of the SNR normalisation.

Events at DUNE

Expected number of events after **20 years of exposure at DUNE**. The experimental window is $19 \le E_{\nu} \le 31$ MeV. The bands represent the uncertainty of the SNR normalisation.

Main results and conclusions

First investigation of non-radiative neutrino decay using a $\frac{3\nu \text{ framework}}{2}$ and including the <u>dependence on</u> the <u>SN progenitors</u> and the <u>uncertainty from the SN rate</u>.

Prediction for the number of events at different experiments: **SK-Gd, HK, JUNO and DUNE**

MAIN RESULTS:

P. Iváñez-Ballesteros and M.C. Volpe, PRD107 (2023) 023017, arXiv:2209.12465

Thank you for your attention

BACK UP SLIDES

QD case: why ν cannot decay into $\bar{\nu}$?

INITIAL STATE:

$$\nu_h \to \nu_{h_L} = \nu_{h_{(-)}} + \mathcal{O}(m/E) \nu_{h_{(+)}}$$

FINAL STATE:

 $\nu_l \; (\bar{\nu}_l) + X$

 \circ Since $m_h \simeq m_l \Longrightarrow v_l \ (\bar{v}_l)$ emitted in the forward direction

• Daughter neutrino:

$$\vec{\vec{p}}_{h} = -1 \quad \begin{cases} \nu_l \to \nu_{l_L} = \nu_{h(-)} + \mathcal{O}(m/E) \ \nu_{h(+)} \\ \bar{\nu}_l \to \bar{\nu}_{l_R} = \nu_{h(+)} + \mathcal{O}(m/E) \ \nu_{h(-)} \end{cases}$$

Neutrinos: chirality and helicity

MSW effect:

Level crossing diagrams. Solid lines represent the eigenvalues of the effective Hamiltonian as function of the electron number density. Figure taken from Dighe and Smirnov (1999).

Number of events

 $N_{\alpha} = \epsilon N_t \int dE_{\nu} \phi_{\nu_{\alpha}}(E_{\nu}) \sigma(E_{\nu})$

	$N_t \ (10^{33})$	ϵ (%)	Time (years)	DSNB window (MeV)	DSNB events
SK-Gd	1.5	57.5	2	(12.8, 30.8)	2 (2) $\bar{\nu}_{e}$
SK-Gd	1.5	73.75	8	(12.8, 30.8)	12 (10) $\bar{\nu}_{e}$
HK	12.5	25	20	(17.3, 31.3)	48 (40) $\bar{\nu}_{e}$
HK-Gd	12.5	40	20	(17.3, 31.3)	76 (64) $\bar{\nu}_e$
JUNO	1.21	50	20	(11.3, 33.3)	20 (17) $\bar{\nu}_e$
DUNE	0.602	86	20	(19,31)	12 (11) ν_e
Ν	umber of	event	s assoc	iated with inv	erse-beta

Properties of the experiments considered and total number of events in the absence of decay in NO (IO).

Number of events associated with inverse-beta decay in JL SK-Gd, HK and JUNO as well as with $v_e - {}^{40}$ Ar scattering (1) in DUNE. The predicted number of events are given in the 200 third to fifth columns for the different τ/m considered. The DR values are given for NO, QD; for NO, SH (in brackets) and (1) 200 for IO (in parenthesis).

	Number of events				
Experiment	No decay	$(\tau/m)_{\rm long}$	$(\tau/m)_{\rm medium}$	$(\tau/m)_{\rm short}$	
SK-Gd	2	2	3	4	
(12.8–30.8)	(2)	[2]	[2]	[2]	
2+8 years		(2)	(1)	(0)	
	12	13	17	22	
	(10)	[12]	[12]	[11]	
		(10)	(7)	(1)	
НК	48	49	61	84	
(17.3–31.3)	(40)	[47]	[45]	[43]	
20 years		(39)	(29)	(6)	
HK-Gd	76	79	98	135	
(17.3–31.3)	(64)	[73]	[73]	[69]	
20 years		(62)	(46)	(9)	
JUNO	20	21	28	37	
(11.3–33.3)	(17)	[20]	[19]	[19]	
20 years		(16)	(10)	(2)	
DUNE	12	12	15	20	
(19–31)	(11)	[11]	[11]	[10]	
20 years		(10)	(8)	(2)	

DSNB flux with ν decay: results for NO, QD case

DSNB v_e and v_x flux on Earth for a decay scenario with NO and QD masses. We consider the fiducial case, $f_{BH} = 0.21$. The bands show the uncertainty of the SNR normalisation.

DSNB flux with ν decay: results for NO, SH case

DSNB v_e and v_x flux on Earth for a decay scenario with NO and SH masses. We consider the fiducial case, $f_{BH} = 0.21$. The bands show the uncertainty of the SNR normalisation.

DSNB flux with ν decay: results for IO

DSNB v_e and v_x flux on Earth for a decay scenario with IO. We consider the fiducial case, $f_{BH} = 0.21$. The bands show the uncertainty of the SNR normalisation.