Predicting the baryon asymmetry in the low scale type I see saw

Based on [2207.01651] & [2305.14427]

Pilar Hernandez, Jacobo López-Pavón, Nuria Rius and Stefan Sandner* *stefan.sandner@ific.uv.es

IRN Neutrino meeting, June 20, 2023

☆ The baryon asymmetry.

% Origin of neutrino masses.

The general problem we try to address.

<u>Our work</u>

Constraints from the asymmetry.

% Predicting the asymmetry from the lab.

[2207.01651]

[2305.14427]

Baryon asymmetry

Baryon asymmetry

Every (dynamical) model needs to explain $Y_B|_{today} = (8.66 \pm 0.01) \times 10^{-11}$

Stefan Sandner IFIC

Baryon asymmetry

Dynamical creation is fundamentally constrained. Sakharov Conditions.

Baryon number violation.

℁ C & CP violation.

Deviation from thermal equilibrium.

Origin of neutrino masses

Minimal scenario: Type I see saw with 2 heavy neutrinos.

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{K} - \frac{1}{2}\overline{N^{c}}_{i}M_{ij}N_{j} - Y_{i\alpha}\overline{L}_{\alpha}\tilde{H}N_{i} + hc.$$
Lepton number violation
& CP violation
Complex Yukawas:
new CP violation
$$N_{1} - \underbrace{H}_{l} + N_{1} - \underbrace{H}_{H} + N_{1} - \underbrace{H}_{l} + N_{1} - \underbrace{H}_{l} + I$$

Possible to constrain M?

Minkowski '77; Yanagida '79; Wyler, Wolfenstein '83; Mohapatra, Valle '86; ...

Stefan Sandner IFIC

Testable mixings between light and heavy neutrinos.

Stefan Sandner IFIC

VNIVERSITAT D VALÈNCIA (Ò,) Facultat de Física

Light ν masses suppressed by LN violating parameters:

$$m_{\nu} = \mu \frac{v^2}{2M^2} Y_1^T Y_1 + \frac{v^2}{2M} \epsilon Y_2^T Y_1 + \frac{v^2}{2M} Y_1^T \epsilon Y_2$$

Mixing between light and heavy neutrinos unsuppressed:

$$U_{\nu N} \simeq Y_1 v / M$$

#Heavy neutrino mass splitting:

$$\Delta M = \mu + \mu'$$

Dependence on leptonic CP phases encoded in Yukawa matrix.

 $Y = f(U_{\text{PMNS}}, U^2, m_{\nu}, M, \Delta M, \theta)$

Light sector

 $Majorona phase \phi$ (Experimentally challenging.)

Dirac phase δ (Can be measured.)

Heavy sector

% High scale phase θ (Experimentally challenging) (Actually very challenging)

Leptogenesis

Baryon asymmetry of our Universe

Neutrino masses

Heavy neutrinos at $\mathcal{O}(\text{GeV})$ scale.

Quantification of the asymmetry via quantum Boltzmann equation.

$$\begin{split} \begin{array}{c} & \left(\begin{array}{c} \dot{\rho} = - i[H,\rho] - \frac{1}{2} \{\Gamma^{a},\rho\} + \frac{1}{2} \{\Gamma^{p},\rho_{eq} - \rho\} \right) \\ & \text{Quantum} \\ \text{density matrix} \end{array} \right) \\ & \text{CP violating} \\ \text{oscillations } H \propto \Delta M_{ij}^{2}/k_{0} \end{array} \\ & \text{efficiency } \Gamma^{a,p} \propto YY^{\dagger}T \\ \hline \\ & r = \rho/\rho_{eq} \\ & xH_{u}\frac{\mathrm{d}r_{\bar{N}}}{\mathrm{d}x} = -i[\langle H^{*}\rangle,r_{\bar{N}}] - \frac{\langle\gamma_{N}^{(0)}\rangle}{2} \{Y^{T}Y^{*},r_{\bar{N}} - 1\} - x^{2}\frac{\langle s_{N}^{(0)}\rangle}{2} \{MY^{\dagger}YM,r_{\bar{N}} - 1\} \\ & r = 1/T \\ & \gamma_{N}^{(i)}\rangle Y^{T}\mu Y^{*} + x^{2}\langle s_{N}^{(i)}\rangle MY^{\dagger}\mu YM \\ & \bar{r} \rightarrow r \\ \text{similar} \\ & \gamma_{i}^{(i)}, s^{(i)} \\ & \text{rates} \end{aligned} \\ & xH_{u}\frac{\mathrm{d}\mu_{B/3-L_{\alpha}}}{\mathrm{d}x} = \frac{\int_{k}\rho_{F}}{\int_{k}\left[\frac{\langle\gamma_{N}^{(0)}\rangle}{2}(Yr_{N}Y^{\dagger} - Y^{*}r_{\bar{N}}Y^{T}) - x^{2}\frac{\langle s_{N}^{(0)}\rangle}{2}(Y^{*}Mr_{N}MY^{T} - YMr_{\bar{N}}MY^{\dagger}) \\ & - \mu_{\alpha}\left(\langle\gamma_{N}^{(1)}\rangle YY^{\dagger} + x^{2}\langle s_{N}^{(1)}\rangle YM^{2}Y^{\dagger}\right) + \frac{\langle\gamma_{N}^{(2)}\rangle}{2}\mu_{\alpha}(Yr_{N}Y^{\dagger} + Y^{*}r_{\bar{N}}Y^{T}) \\ & + x^{2}\frac{\langle s_{N}^{(2)}\rangle}{2}\mu_{\alpha}\left(YMr_{\bar{N}}MY^{\dagger} + Y^{*}Mr_{N}MY^{T}\right) \\ & - x^{2}\frac{\langle s_{N}^{(2)}\rangle}{2}\mu_{\alpha}\left(YMr_{\bar{N}}MY^{\dagger} + Y^{*}Mr_{N}MY^{T}\right) \\ & = x^{2}\frac{\langle s_{N}^{(2)}\rangle}{2}\mu_{\alpha}\left(YMr_{N}MY^{\dagger} + Y^{*}Mr_{N}MY^{T}\right) \\ & = x^{2}\frac{\langle s_{N}^{(2)}\rangle}{2}\mu_{\alpha}\left(YMr_{N}MY^{\dagger} + Y^{*}Mr_{N}MY^{T}\right) \\ & = x^{2}\frac{\langle s_{N}^{(2)}\rangle}{2}\mu_{\alpha}\left(YMr_{N}MY^{\dagger} + Y^{*}Mr_{N}MY^{T}\right) \\ & = x^{2}\frac{\langle s_{N}^{(2)}\rangle}{2}\mu_{\alpha}\left(YMr$$

Stefan Sandner IFIC

VNIVERSITAT D VALÈNCIA (O -) Facultat de Física

Coloured regions in principle provide <u>enough out of equilibrium</u>.

Sakharov conditions fulfilled in testable region of parameter space.

Hernandez, Lopez-Pavon, Rius, Sandner '22

Stefan Sandner IFIC

CP violation

Same game as for SM Jarlskog invariant, but new playground: Y_{l}, Y, M . $I_0 = \operatorname{Im} \left| \operatorname{Tr} \left(Y^{\dagger} Y M^{\dagger} M Y^{\dagger} Y_{\ell} Y_{\ell}^{\dagger} Y \right) \right|$ Hermitian combination — Insensitive to Majorana character. $\equiv \sum y_{\ell_{\alpha}}^{2} \Delta_{\alpha}(\Delta m_{\rm sol}, \Delta m_{\rm atm}, \delta, \phi, U^{2}, M, \theta)$ $I_1 = \operatorname{Im} \left| \operatorname{Tr} \left(Y^{\dagger} Y M^{\dagger} M M^* \left(Y^{\dagger} Y \right)^* M \right) \right|$ High scale phase — Pure Majorana character. $\equiv \sum \Delta_{\alpha}^{M}(\Delta m_{\rm sol}, \Delta m_{\rm atm}, \delta, \phi, U^{2}, M, \theta)$ Expectation: $Y_B = f_i (\Delta_{\alpha}) + \bar{f}_i (\Delta_{\alpha}^M)$

Find f, \overline{f} analytically and relate baryon asymmetry to observables.

Hernandez, Lopez-Pavon, Rius, Sandner '22

Stefan Sandner IFIC

Upper bound on HNL mixing

Hernandez, Lopez-Pavon, Rius, Sandner '22

Stefan Sandner IFIC

VNIVERSITAT (À_) Facultat de Física

Constraints on CP phases

PMNS phases correlated by imposing the observed asymmetry. *Example*: Parameter space covered by FCC-ee with $\Delta M/M = 10^{-2}$.

Hernandez, Lopez-Pavon, Rius, Sandner '22

Implications on $0\nu\beta\beta$

 $\mathcal{O}(\text{GeV})$ scale HNs + observed baryon asymmetry modify $m_{\beta\beta}$ in 2 ways.

Implications on $0\nu\beta\beta$

Example: Parameter space covered by SHiP with $\Delta M/M = 10^{-2}$.

Large contribution from heavy neutrinos in accordance with observed asymmetry.

Stefan Sandner IFIC

VNIVERSITAT D VALÈNCIA (À...) Facultat 🕫 Física

Predicting the baryon asymmetry

The θ phase

 θ mainly controls the Y_B and is *practically* not measurable.

Where does θ actually come from?

$$M_{\nu} = \begin{pmatrix} \overline{V}^{c} & \overline{N}_{1} & \overline{N}_{2} \\ 1 & -1 & 1 & L \\ 0 & Y_{1}^{T} v / \sqrt{2} & \epsilon Y_{2}^{T} v / \sqrt{2} \\ Y_{1} v / \sqrt{2} & \mu' & M \\ \epsilon Y_{2} v / \sqrt{2} & M & \mu \end{pmatrix} \begin{pmatrix} 1 & \nu \\ -1 & N_{1}^{c} \\ 1 & N_{2}^{c} \end{pmatrix}$$

If lepton number is exact in the heavy sector, θ is **not** physical. All CP violation arises from the PMNS phases.

The θ phase

Exact lepton number symmetry in the heavy sector: $M_1 = M_2$.

Hernandez, Lopez-Pavon, Rius, Sandner '23

The θ phase

Thermal corrections to free Hamiltonian lead to an effective "mass difference".

$$H \sim \frac{M^2}{2k} + \frac{T^2}{8k}Y^{\dagger}Y + \frac{E-k}{16k}T$$

Traditional Thermal corrections oscillations

New CP invariant:
$$\tilde{I}_0 \equiv \operatorname{Im}\left(\operatorname{Tr}\left[Y^{\dagger}YM_R^*Y^TY^*M_RY^{\dagger}Y_lY_l^{\dagger}Y\right]\right) \equiv \sum_{\alpha} y_{l_{\alpha}}^2 \Delta_{\alpha}^{th}.$$

** Need flavour effects in Yukawa couplings since $\sum_{\alpha} \Delta_{\alpha}^{th} = 0$. ** Need explicit Majorana rates during thermalization.

Weldon '82; Drewes, Georis, Hagedorn, Klaric '22; Hernandez, Lopez-Pavon, Rius, Sandner '23

Stefan Sandner IFIC

The asymmetry from the lab

Can we predict the Y_B ?

Stefan Sandner IFIC

 $\begin{array}{c} V_{\text{NIVER}} \text{SITAT} \left(\grave{\mathcal{O}}_{-} \right) \\ \hline \\ \mathbb{D} \text{ VALÈNCIA} \left(\grave{\mathcal{O}}_{-} \right) \\ \hline \end{array} \right) \\ \textbf{Facultat} \\ \textbf{de} \\ \textbf{Fisica} \end{array}$

The asymmetry from the lab

We can pin down Y_B with nothing more than lab measurements.

Hernandez, Lopez-Pavon, Rius, Sandner '23

Stefan Sandner IFIC

Conclusions and Outlook

* Minimal neutrino mass models predict a baryon asymmetry even at accesible scales.

* Analytical approximation reveals **correlation** of leptogenesis with other observables.

Stefan Sandner

IFIC

* Can measurably **predict** the asymmetry if the right-handed neutrinos are degenerate.

Developed analytical method applicable to different problems.

 ∦ Numerical code available on <u>GitHub</u>.

	1 tag Go t	o file Add file - Code - About	Ę
stefan minor cout change	da3:	L593 11 days ago (2) 20 commits calculates the baryon as generated via right hanc oscillations. Code used	symmetry led neutrino in
🖿 amiqs	minor cout change	11 days ago https://arxiv.org/abs/220	7.01651
rates_cpp	analytical LN param., detailed testing routine	3 months ago 🛛 Readme	
🗅 .gitignore	initial commit	3 months ago 🗘 4 stars	
README.md	DOI	3 months ago	
kinetic_equation.nb	Mathematica	last month	
logo_transparent.png	renaming	3 months ago	
⋮≣ README.md	n 20 Jul		
arXiv 2207.01651 DOI 10.5281/3	renodo.6866454 License MIT language C++	Packages No packages published Publish your first package	

* Check out [2207.01651] & [2305.14427] for more details.

Supplemental Material

If C or CP are conserved: $\Gamma(A \to B + C) = \Gamma(\bar{A} \to \bar{B} + \bar{C})$

[#] Production and destruction rates in equilibrium: $\Gamma(A → B + C) = \Gamma(B + C → A)$

CP violation

Any CP violating observable requires the interference of at least two amplitudes that differ in CP-even or CP-odd phases

$$\Delta_{CP} \sim |A_1 e^{i\phi_1} e^{i\delta_1} + A_2 e^{i\phi_2} e^{i\delta_2}|^2 - |A_1 e^{i\phi_1} e^{-i\delta_1} + A_2 e^{i\phi_2} e^{-i\delta_2}|^2$$

Vanishes if
$$|\phi_2 - \phi_1| = 0$$
 or $|\delta_2 - \delta_1| = 0$

In the context of ARS leptogenesis:

Oscillations/space-time phases !

P. Hernandez '23, Dublin Theoretical Physics Colloquia

Stefan Sandner IFIC

Baryon asymmetry — in the SM

* CP violation controlled by *complex* CKM matrix.

$$Y_B \propto \Delta_{CP}^{quarks} = Im[det([Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger}])]$$

$$\propto J \frac{1}{v^4} \prod_{i < j} (m_{u_i}^2 - m_{u_j}^2) \prod_{i < j} (m_{d_i}^2 - m_{d_j}^2)$$

<u>Too small</u> Jarlskog invariant: $J = s_{12}s_{23}s_{13}c_{12}c_{23}c_{13}^2 \sin \delta_{CKM}$

Jarlskog '83; Gavela, Hernandez, Orloff, Pene, Quimbay '94

* Out of equilibrium <u>not strong enough</u> with crossover phase transition.

Kajantie, Laine, Rummukainen, Shaposhnikov '96

SM unable to explain observed Y_B .

Neutrino masses

Minkowski '77; Gell-Mann, Ramond, Slansky '79; Yanagida '79; Mohapatra, Senjanovic '80 ...

Stefan Sandner IFIC

VNIVERSITAT (Q_) Facultat de Física

Dark matter / dark radiation

- ✤ Big Bang Nucleosynthesis
- Cosmic microwave background
- Large scale structure

Dolgov, Hansen, Raffelt, Semikoz; Ruchayskiy, Ivashko; Hernandez, Kekic, López-Pavón; Vincent et al;....; Vissani '97

Stefan Sandner IFIC VNIVERSITAT D VALÈNCIA (Ò,) Facultat de Física

Constraints from the baryon asymmetry

Shuve, Yavin '14

CP violation

CP violating observable.

Weak basis independent CP invariants.

Same game as for SM Jarlskog invariant, but new playground: (M_R, Y, Y_ℓ)

Generic invariant transformation of flavour basis

$$\begin{cases} M_R & \to W^T M_R W \\ Y & \to V^{\dagger} Y W \\ Y_{\ell} & \to V^{\dagger} Y_{\ell} U \end{cases}$$

Can distinguish two types of CP violating sources — High scale or mixture.

Very complex system — what should we expect?

Estimated equilibration rate at EWPT: $\Gamma \propto U^2 \frac{M^2}{v^2} T_{EW} \lesssim H = T_{EW}^2 / M_p^*$ Direct Searches in $|U_e^2|$ Violation of SHiP Sakharov .8 FCC conditions!? BBN -10

1.0

1.5

2.0

-12

-0.5

 $\log_{10}(|U^2|)$

See-Saw Limit

0.5

 $\log_{10}(M_1/{\rm GeV})$

0.0

Stefan Sandner IFIC

 $\begin{array}{c} V_{\text{NIVER}} \text{SITAT} \left(\grave{\mathcal{O}}_{-} \right) \\ \hline \\ \mathbb{D} \text{ VALÈNCIA} \left(\grave{\mathcal{O}}_{-} \right) \\ \hline \end{array} \right) \\ \textbf{Facultat} \\ \textbf{de} \\ \textbf{Fisica} \end{array}$

Stefan Sandner IFIC

Adiabatic approximation

Kinetic equation in matrix representation:

$$\begin{aligned} r'(x) &= A(x)r(x) + c(x) = (A^{(0)} + A^{(1)} + \mathcal{O}(\epsilon_{LNV}^2)) r(x) + (c^{(0)} + c^{(1)} + \mathcal{O}(\epsilon_{LNV}^2)) \\ A^{(0)} &= V(x)\Lambda'(x)V^{-1}(x) \\ \end{aligned}$$

In the purely adiabatic limit¹:

$$r_a(x) = V(x)e^{\Lambda(x)} \int^x dz \, e^{-\Lambda(z)} V^{-1}(z)c^{(0)}(z)$$

Leading order adiabatic perturbation²:

$$\delta r_a(x) = -V(x) e^{\Lambda(x)} \int^x dz \, e^{-\Lambda(z)} V^{-1}(z) V'(z) V^{-1}(z) \, r_a(z) = -V(x) e^{\Lambda(x)} \int^x dz \, e^{-\Lambda(z)} V^{-1}(z) \, V'(z) V^{-1}(z) \, r_a(z) = -V(x) e^{-\Lambda(x)} \int^x dz \, e^{-\Lambda(z)} V^{-1}(z) \, V'(z) V^{-1}(z) \, r_a(z) = -V(x) e^{-\Lambda(x)} \int^x dz \, e^{-\Lambda(z)} V^{-1}(z) \, V'(z) \, V^{-1}(z) \, r_a(z) = -V(x) e^{-\Lambda(x)} \int^x dz \, e^{-\Lambda(z)} V^{-1}(z) \, V'(z) \, V'(z) \, V^{-1}(z) \, r_a(z) = -V(x) e^{-\Lambda(x)} \int^x dz \, e^{-\Lambda(z)} V^{-1}(z) \, V'(z) \, V'(z) \, V^{-1}(z) \, r_a(z) = -V(x) e^{-\Lambda(z)} \int^x dz \, e^{-\Lambda(z)} V^{-1}(z) \, V'(z) \, V'(z$$

Higher order corrections obtained similar via time-dependent perturbation theory.

¹Born, Fock 1928; ²Hernandez, Lopez-Pavon, Rius, Sandner 2022

<u>Example</u>: If *oscillations are damped* $\Gamma_{osc}^{th} \simeq P_{osc}\Gamma \lesssim H$ is realizable until EWPT. Physical motivation: softly broken LN symmetry.

VNIVERSITAT D VALÈNCIA (À...) Facultat 🕫 Física

Similar agreement in all other washout regimes.

Light neutrino data constraint: $-(m_{\nu})_{\alpha\beta} = \frac{v^2}{M}(Y_{\alpha 1}Y_{\beta 2} - Y_{\alpha 2}Y_{\beta 1} - Y_{\alpha 1}Y_{\beta 1}\frac{\Delta M}{M}) = (U^*mU^{\dagger})_{\alpha\beta}.$

$$Y_B \simeq \frac{\kappa x^2}{6\gamma_0 + \kappa\gamma_1} \frac{\gamma_0^2}{\gamma_0^2 + 4\omega^2} \frac{c_H M_P^*}{T_{EW}^3} \left(\Delta_{\rm LNC}^{\rm ov} - \frac{24}{5} \frac{s_0 x^3}{T_{EW}^2} \Delta_{\rm LNV}^{\rm ov} \right)$$

 $\Delta_X(\Delta m_{\nu}, \delta, \phi, U^2, M, \Delta M, \theta)$

Hyper Kamiokande (10y)

 $\Delta_X(\Delta m_{\nu}, \delta, \phi, U^2, M, \Delta M, \theta)$

 ϕ via $0\nu\beta\beta$ decay or ... heavy neutrino flavour ratio depends on U_{PMNS} phases.

Stefan Sandner IFIC

VNIVERSITAT D VALÈNCIA (Ò,) Facultat de Física

$$\Delta_X(\Delta m_{\nu}, \delta, \phi, U^2, M, \Delta M, \theta)$$

In general Y_B still depends on the high scale phase θ — difficult to pin down.

<u>Possibility in $0\nu\beta\beta$ </u> $(U_{\alpha})^2 \propto e^{2i\theta} U^2 f(\delta,\phi,M_j)$

Interference effects between light and heavy neutrino contributions to $m_{\beta\beta}$ can reveal θ — theoretically...

Realistically Y_B can not be fully predicted in general, but we can set constraints!

Constraints on flavour structure

Hernandez, Lopez-Pavon, Rius, Sandner '22

Stefan Sandner IFIC

 $\begin{array}{c} V_{\text{NIVER}} \text{SITAT} \left(\grave{\mathcal{O}}_{-} \right) \\ \hline \\ \mathbb{D} \text{ VALÈNCIA} \left(\grave{\mathcal{O}}_{-} \right) \\ \hline \end{array} \right) \\ \textbf{Facultat} \\ \textbf{de} \\ \textbf{Fisica} \end{array}$

Implications on $0\nu\beta\beta$

Example: Parameter space covered by FCC-ee with $\Delta M/M = 10^{-2}$.

Successful leptogenesis restricts expected $m_{\beta\beta}$ range.

Stefan Sandner IFIC

 $\begin{array}{c} V_{\text{NIVER}} \text{SITAT} \left(\grave{\mathcal{O}}_{-} \right) \\ \hline \\ \mathbb{D} \text{ VALÈNCIA} \left(\grave{\mathcal{O}}_{-} \right) \\ \hline \end{array} \right) \\ \textbf{Facultat} \\ \textbf{de} \\ \textbf{Fisica} \end{array}$

Predicting the baryon asymmetry

Within red band we expect a non-vanishing baryon asymmetry.

Solve for Y_B analytically in regions (1) and (2) — similar as before but higher order.

Hernandez, Lopez-Pavon, Rius, Sandner '23

Analytical approximation

Stefan Sandner IFIC

Optimal phases for the asymmetry?

$$Y_B \sim 3 \times 10^{-28} \left(\frac{1}{\mid U^2 \mid}\right)^2 \bar{f}_{\alpha}^{\rm IH}$$

Angular dependence of CP invariant.

$$\bar{f}_{\mu}^{\text{IH}} = \bar{f}_{\tau}^{\text{IH}} = \frac{r^2 c_{12}^2 s_{12}^2 \sin(2\phi)}{2 - 8c_{12}^2 s_{12}^2 \cos^2\phi}$$

Baryon asymmetry vanishes *exactly* for maximal Yukawa flavour hierarchy.

Hernandez, Lopez-Pavon, Rius, Sandner '23

Stefan Sandner IFIC

Upper bound on mixing

FCC-ee could see something.

Stefan Sandner IFIC