

The NEXT experiment

Gonzalo Díaz López

LPNHE since April 23 (IGFAE/USC until February 23)

International Research Network Neutrino June 20th, Nantes

- Introduction: double beta decay
- NEXT, detection concept and phases
- Calibration and reconstruction in NEXT
- Main results: NEXT-White
- Near future prospects: NEXT-100
- Towards tonne scale

• Introduction: double beta decay

- NEXT, detection concept and phases
- Calibration and reconstruction in NEXT
- Main results: NEXT-White
- Near future prospects: NEXT-100
- Towards tonne scale

Double beta decay

• Double beta decay with neutrinos

$$N_Z o N_{Z+2} + 2e^- + 2 \overline{
u}_e$$

 $T_{1/2} \sim 10^{20}$ years

Double beta decay

- Double beta decay without neutrinos
- Neutrinos must be **Majorana** particles (neutrino = antineutrino)
- Sensitive to neutrino mass ordering and absolute scale

LEPTON NUMBER VIOLATION!!

 $T_{1/2} > 10^{26}$ years

- Introduction: double beta decay
- NEXT, detection concept and phases
- Calibration and reconstruction in NEXT
- Main results: NEXT-White
- Near future prospects: NEXT-100
- Towards tonne scale

NEXT Collaboration

Neutrino Experiment with a Xenon TPC

• Asymmetric configuration:

• Energy plane (PMTs) • Tracking plane (SiPMs)

Cathode Anode \overrightarrow{E} • High pressure xenon (enriched to ¹³⁶Xe) TPC ENERGY PLANE (PMTs) TRACKING PLANE (SIPMs) Gas Xe

EL region

• Asymmetric configuration:

• Excitation + Ionization

• Energy plane (PMTs) • Tracking plane (SiPMs)

EL region

• Asymmetric configuration:

• Excitation + Ionization

Scintillation light (S1)

• Energy plane (PMTs)

• Tracking plane (SiPMs)

 \overrightarrow{E} • High pressure xenon (enriched to ¹³⁶Xe) TPC ENERGY PLANE (PMTs) Primary Scintillation **V**....

Gas Xe

Cathode

EL region

Anode

TRACKING PLANE (SIPMs)

• Drifting

- High pressure xenon (enriched to ¹³⁶Xe) TPC
- Asymmetric configuration:
 - Energy plane (PMTs)
 - Tracking plane (SiPMs)
- Excitation + Ionization
- Scintillation light (S1)
- Drifting
- Electroluminescence light (S2)

- High pressure xenon (enriched to ¹³⁶Xe) TPC
- Asymmetric configuration:
 - Energy plane (PMTs)
 - Tracking plane (SiPMs)
- Excitation + Ionization
- Scintillation light (S1)
- Drifting
- Electroluminescence light (S2)
- 3D reconstruction

10

- Gaseous Xenon: resolution + long tracks
- Long tracks: signal vs background discrimination! (Bragg's peak)

(*event candidates in the 2νββ ROI from NEXT-White data, JINST 8 P05025)

Timeline

Timeline

- Introduction: double beta decay
- NEXT, detection concept and phases
- Calibration and reconstruction in NEXT
- Main results: NEXT-White
- Near future prospects: NEXT-100
- Towards tonne scale

Calibration and reconstruction in NEXT

Calibration and reconstruction in NEXT

- Deconvolute diffusion and PSF effect
- Lucy-Richardson algorithm

Calibration and reconstruction in NEXT

- Track voxelization
- Find extremes: BFS algorithm
- Define blobs

- Introduction: double beta decay
- NEXT, detection concept and phases
- Calibration and reconstruction in NEXT
- Main results: NEXT-White
- Near future prospects: NEXT-100
- Towards tonne scale

NEXT-White detector

- 4 kg Xe at 8.5 bar (90% ¹³⁶Xe)
- 50 cm (drift) x 40 cm (diam), 6 mm (EL)
- 12 PMTs (30% coverage)
- 1792 SiPMs at 1 cm pitch
- shielding: 20 cm (Pb), 6 cm (Cu)

NEXT-White main results

- a) Energy resolution of (0.91 \pm 0.07)% FWHM at 2.6 MeV (near Qßß) JHEP 10 (2019) 230
- b) Demonstration of topological signal vs background rejection

JHEP 10 (2019) 52 || JHEP 01 (2021) 189 || JHEP 07 (2021) 146

c) Measurement of $2\nu\beta\beta$ half-life

JHEP 10 (2019) 51 || Phys. Rev. C 105, 055501 (2022)

NEXT-White main results

c) Measurement of $2\nu\beta\beta$ half-life

- signal selection: single-track + topological
- new background subtraction technique
- ~4 σ significance
- compatible with EXO-200 and KamLand-Zen

Phys. Rev. C 105, 055501 (2022)

- Introduction: double beta decay
- The NEXT detection concept and timeline
- Calibration and reconstruction in NEXT
- Main results: NEXT-White
- Near future prospects: NEXT-100
- Towards tonne scale

NEXT-100

2 X NEXT-White! Under construction at LSC!

NEXT-100 $0\nu\beta\beta$ background model

NEXT-100 $0\nu\beta\beta$ sensitivity

$$\left(T_{1/2}^{0
u}
ight)^{-1} = G_{0
u} \cdot |M_{0
u}| \cdot \left(rac{m_{etaeta}}{m_e}
ight)^2$$

$$m_{\beta\beta} = |c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 e^{i2\lambda_2} m_2 + s_{13}^2 e^{i2(\lambda_3 - \delta_{13})} m_3|$$

- Sensitivity estimated by a detailed detector simulation
- Radiogenic activities taken from the material screening campaign
- Cosmogenic contribution estimated from simulation of measured muon flux at LSC
- Expected background rate @ Q $\beta\beta$ (with μ -veto):

0.9 (rad.) + 0.2 (cos.) counts/yr

$$S(T_{1/2}^{0
uetaeta})>2.4 imes10^{25}$$
 years (90% CL)

- Introduction: double beta decay
- The NEXT detection concept and timeline
- Calibration and reconstruction in NEXT
- Main results: NEXT-White
- Near future prospects: NEXT-100
- Towards tonne scale

Towards tonne scale

- Larger detector => lower photon CE
- **NEXT-HD**: symmetric + WLS fibers

Towards tonne scale

 136 Xe \rightarrow 136 Ba²⁺ + 2e⁻

- Barium tagging => zero-background
- Development of FBI compounds

Nature 583, 48–54 (2020)

Thanks for your attention

Ongoing NEXT-100 construction...

Background model

 \checkmark

 \checkmark

 Terrestial natural backgrounds Detector material impurities Airborne radon Radiation from rocks X Cosmogenic backgrounds • Prompt activations Long activations (¹³⁷Xe T_{1/2}~4 min) • 2νββ 🗙

Οββ ~ 2.5 MeV

Background model

Volume	Material	Technique	A(²⁰⁸ Tl)	A(²¹⁴ Bi)
LEAD-BOX	Lead	GDMS	$2.17 \cdot 10^2$	$< 5.32 \cdot 10^3$
STEEL-BOX	Steel	HPGe	8.74	$2.03 \cdot 10^1$
PEDESTAL	Steel	HPGe	$5.04 \cdot 10^2$	$3.58 \cdot 10^2$
BEAMS	Steel	HPGe	$7.08 \cdot 10^2$	$5.03 \cdot 10^2$
VESSEL	Steel	GDMS, HPGe	$< 8.82 \cdot 10^{2}$	$< 3.42 \cdot 10^3$
ICS	Copper	GDMS	< 7.87	$< 1.67 \cdot 10^1$
EP-COPPER-PLATE	Copper	GDMS	$< 4.73\cdot 10^1$	$< 8.20\cdot 10^1$
SAPPHIRE-WINDOW	Sapphire	HPGe	$< 2.16\cdot 10^1$	$<\!6.60\cdot10^1$
OPTICAL-PAD	Silicone	HPGe	< 3.19*	< 7.92*
PMT	Kovar	HPGe	$1.14 \cdot 10^1$	$2.10 \cdot 10^1$
PMT-BASE	Kapton	HPGe	$1.54\cdot 10^1$	$4.09 \cdot 10^1$
TP-COPPER-PLATE	Copper	ICPMS	< 0.21	< 2.28
SIPM-BOARD	-	-	< 9.22	$<\!3.56\cdot10^1$
BOARD-PLUGS	Peek	HPGe	$1.18 \cdot 10^2$	$1.55 \cdot 10^2$
LIGHT-TUBE	Teflon	ICPMS, HPGe	< 7.97	< 3.55
FIELD-RING	Copper	ICPMS	< 2.69	$<\!2.69\cdot10^1$
CATHODE-RING	Steel	ICPMS	$< 5.03 \cdot 10^{-2}$	1.14
ANODE-RING	Steel	ICPMS	$< 5.19 \cdot 10^{-2}$	1.18
GATE-RING	Steel	ICPMS	$< 5.19 \cdot 10^{-2}$	1.18
HDPE-TUBE	HDPE	ICPMS, HPGe	$< 3.74 \cdot 10^{-1}$	< 3.07

- Radiogenic screening campaign
- μ flux @ LSC ~ 3.44 $\cdot 10^{\text{-2}}$ m^2 s^{\text{-1}}

 $(\gamma > 2.4 \text{ MeV}) \times (\text{screening}) \times (\text{nexus } 2.4-2.5 \text{ MeV})$

- Analysis selections
 - nexus (2.4 < E (MeV) < 2.5)
 - reconstruction (1S1 & 1S2)
 - energy (2.4 < E (MeV) < 2.5)
 - fiducial (R<45 cm & Z<2 cm)
 - single track
 - blob overlap
- Signal selections
 - ROI
 - topological

Example of accepted events

• **topological** selection (64% vs 9%)

0νββ background MC true hits $E_{b_2}^{best}$ acceptance 780-0vBB 900region ²¹⁴Bi pdf (MeV⁻¹) 3 208TI 760-880-2 ¹³⁷Xe 740-(mm) 720-Z (mm) 1 860-0 700-0.0 0.2 0.4 0.6 1.2 0.8 1.0 E_{b_2} (MeV) 840-680-660--160 -120 -380 -340 -300 -200 -420 X (mm) X (mm) lower energy higher energy lower energy higher energy

- Background rate (μ -veto) ~ **1.1 counts/year**
- Signal efficiency 18 %

(counts/year)	nexus	reco	ene	fid	track	ovl	ROI	topo	
²¹⁴ Bi	296	94	76	71	35	35	4.9	0.45	
²⁰⁸ Tl	1800	312	277	240	56	56	5.2	0.47	TP_COPPER_PLATE - 15 SIPM_BOARD - _ SHIELDING STRUCT -
muons (μ)	900	50	15	13	7	7	1.32	0.12	SHIELDING_STEEL - SHIELDING_LEAD -
¹³⁷ Xe	33	25	19	15	11	11	1.73	0.16	SAPPHIRE_WINDOW - PMT_BASE - PMT -
									PEDESTAL - POPTICAL_PAD - 208 TI
									$\mu = 137 \nu_{e}$
efficiencies (%) reco	ene	fid	trac	k ov	l R	OI to	opo	GATE_RING -
0νββ	8 83	54	50	4	2 4	2	28	18	DB_PLUG -
									ANODE_RING -
									0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

 $S(T_{1/2}^{0
u\beta\beta}) > 2.4 \times 10^{25}$ years (90% CL)