PET and single electrons at AstroCent and Cagliari U.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952480

05-04-2023 Masayuki Wada AstroCeNT CAMK, PAN **University of Cagliari**

Single electrons **BG** in low mass dark matter searches

- matter searches and define our energy threshold.
- sensitivity.
- from impurities, but we couldn't identify the species of impurities.
- in DS50, and establish reliable methods to mitigate SE events.

• Single/spurious electrons (SE) are at the lowest energy range in our dark

Understanding and lowering the BG are crucial to achieve the world best

From DarkSide-50 experiment, we know large fraction of the SE events are

• We want to identify the impurities based on the time constants we observed

Single electron study **Identification and mitigation**

- We want to build (or use/borrow) a TPC sensitive to single electrons.
- By introducing known amount of impurities such as N₂, O₂, Kr, etc., we study time constants of those SE relative to previous events.
- By building a cold trap with charcoal, we establish a way to remove those impurities.
- The hint of impurity reduction is there in DS50 data.

Correlation between the SE rate and Rn-trap temperature in DS50

A Cold trap for SE mitigation

- We plan to build a cold trap with full temperature control.
- With a mass spectrometer, first, we will evaluate the performance by measuring the breakthrough times for several impurities as a function of temperature.
- Then, connect to the TPC and evaluate the performance with SE rates.

Cross section of Kr cold trap

Positron Emission Tomography Medical application

- In the University of Cagliari, we received a funding €340k, which is finishing in this Sumer, for PET development.
- Building a prototype PET scanner with SiPM+ASIC readout.
- Cryogenic system large enough to handle a PET scanner.
- Ongoing effort to measure the time resolution of SiPM + ASIC.

What is Positron Emission Tomography (PET)? **How does it Work?**

Credit: https://www.researchgate.net/publication/262189675_PET_imaging_in_multiple_sclerosis

$3D\pi$ scanner, an application in medical physics of the DarkSide collaboration

Our 3-Dimensional Positron Emission Tomography scanner (3DPi) Monte Carlo Simulation

Fusion 360 CAD model render of the $3D\pi$ geometry

3Dπscanner, an application in medical physics of the DarkSide collaboration

SiPM size: 10×10 mm² Number of SiPMs ~10⁶ channels PTFE (Teflon) supporting structure

Single detection layer of the $3D\pi$ detector with the LAr+Xe scintillation conguration.

Each detection layer contains bottom and top layer of PTFE supporting material with an array of SiPMs.

Credit: arXiv:1403.0525				
Property	LAr	LXe	LAr+LX	
Fast decay time (ns)	7	4.3	~6	
Slow decay time (ns)	1600	22	~100	
Light yield (Photons/keV)	40	42	41	
Wavelength (nm)	128	175	~175	
Density (g/cm3)	1.40	2.94	~1.40	
Temperature (K)	87	162	87	
Cost (US\$/kg)	~2	~2000	~2	

Combine the advantages of both ===>Xenon-doped Liquid Argon (Xe concentration ~100 ppm) Scintillation light at a wavelength of 175 nm (as a WLS) *Operation at temperatures close to the argon boiling point, so don't need cooling down and have lower DCR Shorter slow decay time than the pure liquid argon

SiPM Dark Count Rate (DCR) vs. Temperature

Reduction in the dark count rate improves the timing capability of the devices

3Dπscanner, an application in medical physics of the DarkSide collaboration

A guide to characterize PET performance

Three types of coincident events

9

3Dπ scanner, an application in medical physics of the DarkSide collaboration

ner	Peak NECR	Activity concentration at peak	Scatter Fraction at peak	
PET (Preliminary)	~8.75 Mcps	~8 kBq/mL	45.2%	
ORER TB-PET/CT ual)	~1.5 Mcps	17.3 kBq/mL	37.4%	
Г-ТВ (МС)	630 kcps	30 kBq/mL	36.2%	
IGNA PET/CT Jal)	218 kcps	17.8 kB/mL	43.6%	
MiBrain PET Jal)	49 kcps	~14 kB/mL	48%	
N PET (Actual)	144 kcps	9.8 kBq/mL	19%	

Higher NECR at lower activity decay rate means extremely reduction radiopharmaceutical dose

The time-of-flight (TOF) resolution of a system defines the uncertainty in detecting the arrival time- difference of two photons in a coincidence event.

Scanner	Peak NECR	TOF resolution at peak
Our PET (MC) <mark>(Preliminary)</mark>	~8 kBq/mL	~163 ps
EXPLORER TB-PET/CT (Actual)	17.3 kBq/mL	505 ps
J-PET-TB (MC)	30 kBq/mL	500 ps
VRAIN PET (Actual)	9.8 kBq/mL	229 ps

3Dπ scanner, an application in medical physics of the DarkSide collaboration

