

Hyper-K PMTs Charge and Time **Reconstruction with HKROC ASIC**

Antoine Beauchêne - July 12th, 2023

GDR - Détecteurs et Instrumentation pour les 2 Infinis

Water Cherenkov detector

- Beginning of data taking: 2027

HK PMTs Charge and Time Reconstruction with HKROC ASIC Antoine Beauchêne July 12th, 2023

Water Cherenkov detector

- <u>Construction</u>: $2020 \rightarrow 2027$ (on-time)
- Beginning of data taking: 2027
- <u>Water mass (Fiducial mass)</u>: 258 kton (186 kton)
- 20 000 PMTs in the Inner Detector
 - Diameter: 50 cm
 - Photocathode coverage: 20%

- Located 650 m under Mt. Nijugoyama
 - Shield from cosmic muons

Antoine Beauchêne *July* 12th, 2023 HK PMTs Charge and Time Reconstruction with HKROC ASIC

Physics program

- <u>Accelerator & Atmospheric ν </u>
 - CP violation for leptons; Measurement of δ_{CP} ; Leptogenesis; Mass hierarchy
- Proton decay
 - <u>**G**</u>rand <u>**U**</u>nified <u>**T**</u>heories through *p* decay
- Solar ν
 - MSW effect; Non-standard interactions —
- <u>Supernova u</u>
 - <u>Direct</u>: Supernova models —
 - **Diffuse Supernova Neutrino Background**: Star formation rate; Black hole fraction; History of the Universe; Non-standard interactions

J-PARC

Hyper-K

Cranting

MEGA

Cherenkov effect

• Need charged particles!

$$\begin{array}{ccc} & - & \nu_e \to e^- \mid \overline{\nu}_e \to e^+ \\ & - & \nu_\mu \to \mu^- \mid \overline{\nu}_\mu \to \mu^+ \end{array} \end{array}$$

- In a medium: If $v_{\text{charged particle}} > c/n \Rightarrow$ above the Cherenkov threshold
- For SK & HK: $n_{\text{water}} = 1.333 \Rightarrow c/n_{\text{water}} \approx 3c/4$
- Particle identification based on the ring pattern - $e^{-/+}: m_e$ small \rightarrow Often scatter \rightarrow Fuzzy ring

-
$$\mu^{-/+}: m_{\mu} \approx 200 \times m_e \rightarrow \text{Straight trajector}$$

Photomultiplier tubes

3 700 delivered up to now

- 20 000 PMTs of 50 cm: Hamamatsu R12860-HQE (\leftrightarrow <u>H</u>igh <u>Q</u>uantum <u>E</u>fficiency)
- <u>Constant quality inspection</u>: Visual and measurements

Antoine Beauchêne

July 12th, 2023

HK PMTs Charge and Time Reconstruction with HKROC ASIC

collabor of Hyper-Kamiokand

Photomultiplier tubes

PMT Properties	Super-K	
Dynode structure	Venetian blind	

- e^- might miss first dynode ($\searrow CE$)
- Drift path can vary (\ T & Q res.)

Hamamatsu R12860-HQE

e⁻ almost never miss box-shape dynode (**/ CE**) Uniform drift path (/ T & Q res.)

MEGA

CLUBIC

Photomultiplier tubes

PMT Properties	Super-K	
Dynode structure	Venetian blind	
Quantum <u>E</u> fficiency (at 390 nm)	≈ 22%	

$$QE_{\lambda} = \frac{N_{\text{p.e.}}}{N_{\gamma}} = \underbrace{(1-R)}_{\text{Reflection}} \cdot \underbrace{\frac{P_{\lambda}}{k}}_{\text{Reflection}} \cdot \underbrace{\left(\frac{1}{1+1/(kL)}\right)}_{\text{Loss Excitation Photocathode Process}}$$

*p.e. \leftrightarrow photoelectron

Optimized thickness of anti-reflection layer and photocathode deposition

Antoine Beauchêne

July 12th, 2023

HK PMTs Charge and Time Reconstruction with HKROC ASIC

Hamamatsu R12860-HQE

- <u>Layers</u>:
 - Input window (*borosilicate glass*)

MEGA

- Anti-reflection layer
- Photocathode (*bialkali*)

Crant

5

Photomultiplier tubes

PMT Properties	Super-K	
Dynode structure	Venetian blind	
Quantum <u>E</u> fficiency (at 390 nm)	≈ 22%	
<u>Collection Efficiency</u> (at 10 ⁷ gain)	≈ 73%	
<u>H</u> it <u>E</u> fficiency (at 1/4 p.e. threshold)	≈ 72%	
<u>Detection Efficiency</u> (QE × CE × HE)	≈ 12%	
Time resolution (TTS for 1 p.e.)	≈ 6.7 ns (σ ≈ 3.4 ns)	
Charge resolution	≈ 60%	
Dark rate	≈4 kHz	

Antoine Beauchêne

July 12th, 2023

HK PMTs Charge and Time Reconstruction with HKROC ASIC

Hamamatsu R12860-HQE

CITS IN2P3

Photomultiplier tubes

PMT Properties	Super-K	
Dynode structure	Venetian blind	
Quantum <u>E</u> fficiency (at 390 nm)	≈ 22%	
<u>Collection Efficiency</u> (at 10 ⁷ gain)	≈ 73%	
<u>H</u> it <u>E</u> fficiency (at 1/4 p.e. threshold)	≈ 72%	
Detection <u>E</u> fficiency (QE × CE × HE)	≈ 12%	
Time resolution (TTS for 1 p.e.)	≈ 6.7 ns (σ ≈ 3.4 ns)	
Charge resolution	≈ 60%	
Dark rate	≈4 kHz	

Antoine Beauchêne

July 12th, 2023

HK PMTs Charge and Time Reconstruction with HKROC ASIC

Hamamatsu R12860-HQE

Better vertex reconstruction

Photomultiplier tubes

PMT Properties	Super-K	
Dynode structure	Venetian blind	
Quantum <u>E</u> fficiency (at 390 nm)	≈ 22%	
<u>Collection Efficiency</u> (at 10 ⁷ gain)	≈ 73%	
<u>H</u> it <u>E</u> fficiency (at 1/4 p.e. threshold)	≈ 72%	
Detection <u>E</u> fficiency (QE × CE × HE)	$\approx 12\%$ $\times \approx 12\%$	2.
Time resolution (TTS for 1 p.e.)	≈ 6.7 ns (σ ≈ 3.4 ns)	
Charge resolution	≈ 60%	
Dark rate	≈4 kHz	

Antoine Beauchêne

July 12th, 2023

HK PMTs Charge and Time Reconstruction with HKROC ASIC

Hamamatsu R12860-HQE

Better vertex reconstruction

Better energy reconstruction

Origins

- Stands for <u>Hyper-Kamiokande</u> <u>ReadOut</u> <u>Chip</u>
- ASIC designed as a proposition for the readout of the PMTs of HK
- Based on **HGCROC** chip developed for the CMS <u>High-Granularity</u> <u>Calorimeter</u>
 - Same ADC, TDC, PLL and readout
 - Small changes in analog and digital parts
- therefore different experiments

HGCROC

HKROC

• Originally created for HK → **Could be adapted/optimized** for different type of PMTs and

Requirements

• <u>Electronic box under water</u>: Less cable and signal degradation

Physics constraint

Detect synchronous & asynchronous events (accelerator & atmospheric, solar, supernova and p dec

Detect close supernova without event loss (e.g. Betelgeuse)

Low energy events detection (e.g. SN or atmospheric neutrinos)

Detection of events from low to high energy

Excellent charge (i.e. energy) reconstruction performan

Electronics time resolution < PMT time resolution (1.3

Low power consumption

Antoine Beauchêne

July 12th, 2023

HK PMTs Charge and Time Reconstruction with HKROC ASIC

*1 p.e. \leftrightarrow 2 pC

	Electronics requirement
cay)	Self-triggering for each channel
	Channel dead time $(< 1 \mu s)$
	Low charge threshold (< 1/6 p.e.)
	Large dynamic charge range (from 1 to 1 250 p.e.)
nces	Charge linearity and resolution $(< 1\%)$
s ns)	Time resolution (< 0.3 ns for 1 p.e.)
	<1W/channel

CIRCUTATION

Main features

• <u>1 HKROC chip</u>: 12 PMTs \leftrightarrow 36 channels (High, Medium & Low gain)

- ASIC in TSMC 130 nm node
- Low power: 10 mW/channel
- Large dynamic range: From 1 to 1 250 p.e.
- <u>4 readouts / ASIC @ 1.28 Gb / s</u>: 1 readout \leftrightarrow 3 PMTs

Customera

MEGA

Principle

- 40 MHz waveform digitizer with auto-trigger:
 - Full shape of the signal waveform is reconstructed
 - Extremely precise timing measurement (1 point/25 ns)
- Charge digitized by $N = 1 \rightarrow 7$ points (tunable)

Antoine Beauchêne

July 12th, 2023

HK PMTs Charge and Time Reconstruction with HKROC ASIC

<u>Digitizer</u>: Front-end board for charge and time reconstruction 2 HKROC chip/digitizer

MEGA

Cranition

9

Principle

- 40 MHz waveform digitizer with auto-trigger:
 - Full shape of the signal waveform is reconstructed
 - Extremely precise timing measurement (1 point/25 ns)
- Charge digitized by $N = 1 \rightarrow 7$ points (tunable)
- Charge reconstruction algorithm in FPGA
- Two modes:
 - <u>Normal mode</u>: Hit rate capability up to 400 kHz/PMT (High, Medium & Low) —
 - Supernova mode: Increased up to 950 kHz by focusing on High gain

<u>Digitizer</u>: Front-end board for charge and time reconstruction 2 HKROC chip/digitizer

Crant

MEGA

Principle... with more details

Antoine Beauchêne

July 12th, 2023

HK PMTs Charge and Time Reconstruction with HKROC ASIC

CRATCS

VIN2P3

Principle... with more details

Antoine Beauchêne

July 12th, 2023

HK PMTs Charge and Time Reconstruction with HKROC ASIC

POLYTECHNIQUE

Principle... with more details

Antoine Beauchêne

July 12th, 2023

HK PMTs Charge and Time Reconstruction with HKROC ASIC

Principle... with more details

• After preamplification, signal follows two paths:

Antoine Beauchêne

July 12th, 2023

HK PMTs Charge and Time Reconstruction with HKROC ASIC

Principle... with more details

- After preamplification, signal follows two paths:
 - Fast path with discriminator connected to the TDC for time measurement:
 - Dead time: 30 ns \bullet

July 12th, 2023 Antoine Beauchêne

HK PMTs Charge and Time Reconstruction with HKROC ASIC

CLUBIC

/IN2P3

Principle... with more details

- After preamplification, signal follows two paths:
 - Fast path with discriminator connected to the TDC for time measurement:
 - Dead time: 30 ns
 - Slow path with shaper connected to the ADC for charge measurement:
 - Use the full available dynamic range (1.2 V)

Charge reconstruction

- Build reference waveforms:
 - **Calibrate** each channel (gain) with one charge:
 - <u>High gain</u>: $q_{ref.} = 1$ p.e.
 - <u>Medium gain</u>: $q_{ref.} = 20$ p.e.
 - Low gain: $q_{\text{ref.}} = 200$ p.e.
- Given a waveform, find associated charge *q*:

$$-\chi^{2}(\alpha) = \sum_{i=1}^{N} \left(\frac{y_{i} - \alpha w_{i}}{\sigma_{i}}\right)^{2}$$
$$-\frac{d\chi^{2}}{d\alpha} = 0 \iff \alpha = \frac{\sum_{i=1}^{N} \frac{y_{i}w_{i}}{\sigma_{i}^{2}}}{\sum_{i=1}^{N} \frac{w_{i}^{2}}{\sigma_{i}^{2}}} \Rightarrow q = \alpha q_{re}$$

HK PMTs Charge and Time Reconstruction with HKROC ASIC

MEGA

Microelectroni

Cranting

Charge linearity

Antoine Beauchêne

July 12th, 2023

HK PMTs Charge and Time Reconstruction with HKROC ASIC

Charge resolution

MEGA

CLEAR

/IN2P3

Time resolution

- <u>At 1 p.e.</u>: 150 ps
- <u>Above 10 p.e.</u>: 25 ps

Antoine Beauchêne

July 12th, 2023

HK PMTs Charge and Time Reconstruction with HKROC ASIC

Pile-up & Dead time

MEGA

• <u>Charge reconstruction</u>:

Creatives

IN2P3

- $\alpha w_i \leftarrow \alpha w_i + \beta w_{i-dt}$
- <u>Dead time</u>: 30 ns

Conclusion

Hyper-Kamiokande PMTs & HKROC

- <u>Hyper-Kamiokande PMTs</u>:
 - 50 cm HQE Box & Line PMTs with twice the detection efficiency of SK PMTs —
 - Better vertex and energy reconstruction
- <u>HKROC digitizer</u>:
 - Charge linearity $< \pm 1\%$ from 1 to 1 250 p.e. —
 - Charge resolution < 0.1 p.e. below 10 p.e. and < 1% above —
 - Time resolution of 150 ps at 1 p.e. and 25 ps above 10 p.e.
 - Dead time of 30 ns

Hamamatsu R12860-HQE

HKROC

Backup

Antoine Beauchêne

Photomultiplier tubes

HK PMTs Charge and Time Reconstruction with HKROC ASIC July 12th, 2023

• *R*: Reflection coefficient

- P_{λ} : Probability that light absorption excites electrons above the vacuum level
- *k*: Total photon absorption coefficient
- *L*: Mean escape length of excited electrons

Backup

Photomultiplier tubes

Antoine Beauchêne

July 12th, 2023

HK PMTs Charge and Time Reconstruction with HKROC ASIC

CTERTS IN2P3

MEGA

Backup

Photomultiplier tubes

- Other improvements:
 - <u>Glass purity</u>: Reduced of residual impurities (source of scintillation) _ and improved transparency
 - Reduce radon content of cables: 1.4 mBq/m \rightarrow < 0.1 mBq/m

Radio isotopes in glass [Bq/kg]	Super-K
U	5.5
Th	1.8
40 K	18.2

Antoine Beauchêne

July 12th, 2023

HK PMTs Charge and Time Reconstruction with HKROC ASIC

Hamamatsu R12860-HQE

III