Solid-state bolometric sensors

Shamashis Sengupta

Astroparticles Solid-State Detectors (ASSD)

Andrea Giuliani Pierre de Marcillac Stefanos Marnieros Claire Marrache-Kikuchi Jean-Antoine Scarpaci Louis Dumoulin Alexandre Broniatowski Maurice Chapellier Shamashis Sengupta

Pôle Ingénierie

Emiliano Olivieri Laurent Bergé Pia Loaiza Denys Poda

PhD students

Leonard Imbert Le Hong Hoang To Madhujit Madhukuttan

Basic principles of calorimeters

- The only relevant parameter for the energy absorber is the heat capacity C.
- The thermal conductance to the bath G enables the temperature recover.

signal
$$\Delta T = E/C$$
 $\tau = C/G$ relaxation time

Dielectric diamagnetic materials are preferred

$$\frown$$
 C \propto (T/ Θ_{D})³ (Debye Law)

Semiconductor thermistors

Doped semiconductors close to the Metal to Insulator Transition (MIT)

At low temperatures (< ~10 K), the resistivity is given by: (Variable Range Hopping with Coulomb gap conduction regime)

 $\rho(T) = \rho_0 \exp[(T_0/T)^{1/2}]$

 $T^{}_{0}$ depends on the doping level \rightarrow it fixes $\rho^{}_{0}$ and the sensitivity

Two main types:

- Neutron Transmutation Doped (NTD) Ge thermistors
- Ge crystal exposed to neutron bombardment
- Neutron capture and subsequent β decay and electronic capture produce p and n doping
- Neutron dose fixes net doping
- MIT: 6 x 10 ¹⁶ cm ⁻³

$\begin{array}{c|c} \hline \mathbf{C} & 10^4 \\ \mathbf{M} & \mathbf{example} \\ 10^2 \\ \hline 20 & 100 \\ \mathbf{T} \ [\mathrm{mK}] \end{array}$

NTD Ge

200

10⁶

② Si-implanted thermistors

- Standard microelectronic technology
- Implantation of P, As (n-doping), B (p-doping)
- MIT (Si:P): 3 x 10 ¹⁸ cm ⁻³

Neganov-Trofimov-Luke (NTL) effect

Charge-to-heat transducers exploiting the Neganov-Trofimov-Luke effect for light detection in rare-event searches

V. Novati^a, L. Bergé^a, L. Dumoulin^a, A. Giuliani^{a,b}, M. Mancuso^a, P. de Marcillac^a, S. Marnieros^a, E. Olivieri^{a,*}, D.V. Poda^{a,d}, M. Tenconi^a, A.S. Zolotarova^c

Nuclear Inst. and Methods in Physics Research, A 940, 320–327 (2019)

^a CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay, France

^b DISAT, Università dell'Insubria, 22100 Como, Italy

^c IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France

^d Institute for Nuclear Research, 03028 Kyiv, Ukraine

Large area Ge light detectors

Electric voltage used to amplify charge signal

Copper holder

Neganov-Trofimov-Luke (NTL) effect

Calibration is done with X-rays, background cosmic rays etc.

(a) Energy spectrum of an X-ray $^{55}{\rm Fe}$ source, irradiating the NTLLD1 detector.

(c) LED pulses (bursts) of different intensities delivered to the detector (NTLLD2), which records signal of x_0 amplitude (uncalibrated). Each peak has $(x_0)_i$ mean and σ_i^2 width.

Most of the tests were done with photons from infrared LED setup

Transition edge sensors (TES)

- TES is a superconducting film kept around T_c
- It exploits the steep temperature dependence of the resistance in these conditions

if we define the sensitivity as $A \equiv |d \log R/d \log T|$ $A \cong 10 \text{ for ST}$ $A \cong 1000 \text{ for TES}$ Low impedance thermistors $\Rightarrow SQUID \text{ readout}$

Much higher S/N ratio with respect to ST

Superconductor-Insulator transition (SIT)

- It is important to have low T_c in order to operate detectors at low temperatures
- Only a few SCs have $T_c < 110 \text{ mK}$
- Sometimes it is useful to tune T_c at a desired value

Nb, Si, Percentage of Nb in the x=0.076 104 alloy of Nb and Si drastically changes the transport properties 10² Insulator ρ (Ωcm) 10⁰ Both metallic and insulating states are possible 10-2 Superconductor These films can be used both 10-4 for low impedance and high 3.0 0.5 1.0 1.5 2.0 2.5 3.5 0.0 impedance TESs Temperature (K)

10

Stefanos Marnieros, PhD thesis, 1998

Different ways to tune T_c : Film thickness, composition, annealing temperature x=0.078 =0.080

=0.083 =0.090

(=0.13)

4.0

Lab facilities

Coevaporation system

Dilution fridge

Arrays of TESs

- Radiation absorber
- Thermometer
- Thermally isolated holder

204-pixel array of amorphous $Nb_{0.14}Si_{0.86}$ with a meander structure

High-impedance NbSi TES sensors for studying the cosmic microwave background radiation

C. Nones et al., Astronomy & Astrophysics 548, A17 (2012)

Geometry name	<i>d</i> [µm]	Gap [<i>µ</i> m]	Surface [mm ²]
Thin horizontal (A)*	10	10	1.51
Thin circular (B)	10	10	1.55
Thick vertical (C)	30	10	2.25
Thin vertical (D)	10	10	1.54
Medium vertical	15	5	2.31
			9

High impedance thermistors

High Impedance TES Bolometers for EDELWEISS

S. Marnieros¹ · E. Armengaud² · Q. Arnaud³ · C. Augier³ · A. Benoît⁴ · L. Bergé¹ · J. Billard³ · A. Broniatowski¹ · P. Camus⁴ · A. Cazes³ · M. Chapellier¹ · F. Charlieux³ · M. De Jésus³ · L. Dumoulin¹ · K. Eitel⁵ · J.-B. Fillipini³ · D. Filosofov⁶ · J. Gascon³ · A. Giuliani¹ · M. Gros² · Y. Jin⁷ · A. Juillard³ · M. Kleifges⁸ · H. Lattaud³ · D. Misiak³ · X.-F. Navick² · C. Nones² · E. Olivieri¹ · C. Oriol¹ · P. Pari⁹ · B. Paul² · D. Poda¹ · S. Rozov⁶ · T. Salagnac³ · V. Sanglard³ · L. Vagneron³ · E. Yakushev⁶ · A. Zolotarova¹

High impedance allows readout with JFET electronics

Calibration of a 200 g NbSi -Ge bolometer using ⁷¹Ge activation by neutrons. The Ge crystal was biased at 66 V for NTL amplification.

Journal of Low Temperature Physics (2023) 211:214–219

High aspect ratio meander: Line length to line width : $10^3 - 10^4$

Composition : Nb_{0.132}Si_{0.868}

10

Nb_xSi_{1-x} spiral Al grid

QUBIC installation at Argentina

TES pixel array

250 pixel array for QUBIC

Deep silicon etching to realise the suspended membranes. High thermal decoupling to optimise signal/noise

TES pixel array

Phase diagram of Y_xSi_{1-x}

Composition-dependence of transport properties in YSi thermometric films

L. H. H. To · S. Sengupta · F. Pallier · L. Bergé · L. Dumoulin · S. Marnieros · C. Marrache-Kikuchi.

Journal of Low Temperature Physics, 209, 1104–1110 (2022)

Superconductor-Insulator transition with varying composition

Resistance characteristics of insulating a-Y₂₀Si₈₀ film (thickness : 30 nm)

Highlights

Semiconductor thermistors and detectors

Transition edge sensors with superconductors

Copper holder

Study of new materials