

Quantum Technologies applied to 2∞ physics

Hélène le Sueur

Quantronics Group, Service de Physique de l'Etat Condensé, CEA Saclay

QT / 2∞

What do they have in common?

Solid state physics

Materials and quantum phenomena

Quantum physics Cosmology Astroparticles & appl. & appl. Vacuum energy Dark energy & Dark matter **Quantum limited** Intrication ... Cosmological constants ... amplifier detectors Robust QuBits, Single photon Cosmic background instrumentation memories detectors Low temperatures Axions metrology Computing Neutrinos Low radioactivity network reaching the « quantum limit » Qu-tech

Advanced electronics Shields from radioactivity Cosmology – astroparticles

"Quantum Detectors"

What are we talking about?

Quantum Sensing, C.L. Degen et al.

" Use of a *quantum system*, *quantum properties* or *quantum phenomena* to perform a measurement of a physical quantity" Rev. Mod. Phys. **89**, 035002 (2017)

"Quantum Detectors"

What are we talking about?

Quantum Sensing, C.L. Degen et al.

" Use of a *quantum system, quantum properties* or *quantum phenomena* to perform a measurement of a physical quantity" Rev. Mod. Phys. **89**, 035002 (2017)

Device based on quantum physics (eg solid state...)? \rightarrow ~ all of them

Device that operates in the quantum regime ? i.e. kT<< characteristic energies

More specifically: detectors that exploit

- Quantum coherence
- Superposition
- Entanglement
- Squeezing
- backaction evasion

"Quantum Detectors"

Synopsis

General scope: single 'X' (atom, electron, ...) devices

Key feature: quantum coherence

Figure of merit: strong sensitivity to external disturbances

Famous examples:

Atom clocks, squids, cold atom gravimeters, gravitational wave detectors

Already exploited to measure:

magnetic and electric fields, time and frequency, gravity field (eg rotations...), temperature, pressure...

Today's menu

- What does a « quantum measurement » mean ? A bit of definitions
- Two strategies for em field measurements: click or flux
- How to build a superconducting quantum circuit
 low losses and some nonlinearity
- 2 nice examples of QT detectors applied to 2∞
 The parametric amplifier and the single microwave photon counter

Measure the position x of a free particle with super high precision

Measure the position x of a free particle with super high precision

Measure the position x of a free particle with super high precision

 $m{x}$ measurement has given an unpredictible (and non reproducible) kick on $m{p}$

Conversely, measuring p would push x in an unpredictible (and non reproducible) way

9

Measure the momentum p of a free particle with super high precision

« Quantum Non Demolition measurement of p »

Quantum non demolition

 $[\hat{a}(t),\hat{a}(t+dt)]=0$

V. Braginsky, Y. I. Vorontsov, and K. P. Thorne, Science 209, 547 (1980), see also Caves, Unruh

Free particle	<u>Oscillator</u>
$[\hat{x}(t), \hat{x}(t+dt)] = i \hbar dt/m$	$[\hat{x}(t), \hat{x}(t+dt)] = \frac{i\hbar}{m} \sin(\omega dt)$
$[\hat{p}(t), \hat{p}(t+dt)] = 0$	$[\hat{p}(t), \hat{p}(t + dt)] = i \hbar m\omega \sin(\omega dt)$
$\widehat{H} n\rangle = E_n n\rangle$ p and E are continuous QND observables	x and p are stroboscopic QND observables !
	amplitude
	<i>E</i> and $x \pm i \frac{p}{m \omega}$ are continuous QND observables !

Measure one quadrature of the amplitude : « Backaction evading measurements »

Measuring small (coherent) fields

Caves, Phys. Rev. D 1981, 23, 1693-1708

« Standard quantum limit »

Strategy: Prepare vacuum in a « squeezed state » to reduce measurement noise

GW detectors use squeezing in order to beat standard quantum limit

Galaxies 2022, 10(2), 46

PRL 116, 061102 (2016)

 2∞ : Rare events, incoherent \rightarrow needs mostly click detectors

(superconducting) circuit description

for Quantum Technologies

$$\left[\widehat{\Phi},\widehat{Q}\right]=i\hbar$$

conjugate variables

 $\hat{arphi} = 2\pi rac{\hat{\Phi}}{h/2e}$ "phase" dimensionless variables : $\hat{N} = \hat{Q}/2e$ # Cooper pairs

simplest quantum object : harmonic oscillator

need to add non-linearity !

Josephson Junction

THE non-linear element at the root of most superconducting quantum devices

Josephson Junction

dissipationless nonlinear inductor

QuBit: non-linear oscillator

effective two level system

Josephson / kinetic Inductance

property of the superfluid condensate

 $|\Psi\rangle = \Delta e^{i\varphi}$

kinetic inductance

$$\left. \frac{\partial I}{\partial \phi} \right|_{I=x} \equiv L_K^{-1}$$

 $\nabla \varphi$

Used in many fields: quantum technologies and cosmologie / astroparticles

Famous examples

Superconducting quantum devices used for Dark Matter Search

Cooper pair box Electrometer

Transmon Qubit → Single µw Photon Det

Josephson Parametric Amplifier

TWPA

Parametric Amplifier

Example of 3 wave mixing

Measuring small microwave (coherent) fields

noise power per unit bandwidth [W/Hz] = $k_B T_N = n hv$

Measuring small microwave (coherent) fields

Josephson quantum limited amplifiers

Principle of parametric amplifiers

 $\boldsymbol{\omega}_p = \boldsymbol{\omega}_s + \boldsymbol{\omega}_i$

with SQUIDS

Nice example : travelling wave parametric amplifier

PHYS. REV. X 10, 021021 (2020)

Nature Physics volume 8, pages 623–627 (2012)

Single Microwave Photon Detector SMPD

E. Flurin, P. Bertet, (SPEC, Université Paris-Saclay, CEA) QUAX collaboration

Lescanne et al., PRX (2020)

$$\omega_a + \omega_p = \omega_q + \omega_b$$

$$\boldsymbol{\omega}_a + \boldsymbol{\omega}_p = \boldsymbol{\omega}_q + \boldsymbol{\omega}_b$$

Four-Wave mixing-based Photodetection

$$\widehat{H} = g_4 \cdot \left(\xi \, \widehat{a}\widehat{\sigma}^+ \widehat{b}^+ + \xi^* \, \widehat{a}^+ \widehat{\sigma}\widehat{b}\right)$$

Built-in detector reset

$$\omega_q + \omega_b = \omega_a + \omega_p$$

$$\widehat{H} = g_4 \cdot (\xi \widehat{b^+} \widehat{b^+} + \xi^* \widehat{a^+} \widehat{\sigma} \widehat{b})$$

Implementation

Axion detectors ("haloscopes")

« Ferromagnetic haloscope »

Crescini, COMMUNICATIONS PHYSICS (2020)

How to detect the photon ?

- Squid amplifier (ADMX)
 - (J. Clarke) Rev. Mod. Phys., Vol. 75, No. 3, July 2003
- Josephson Parametric amplifier (HAYSTAC) (K. Lehnert) Phys. Rev. Lett. 118, 061302 (2017)
- Single microwave photon detector (QUAX) Lescanne et al., PRX 2020 (D. Schuster) Dixit et al. PRL 2021

Dark matter Axion detection

Advantage of SMPD over linear detectors operated at the quantum limit $SNR = P_S/P_N$

Signal-to-noise with linear amplifier at the quantum limit

$$SNR_{lin} = \frac{P_{axion}}{\hbar\omega/2} \sqrt{\frac{t_{lin}}{\kappa_{axion}}} \quad axion \ linewidth \quad \sim 10 \ \text{kHz}$$
Signal-to-noise with SMPD
axion power $\sim 1 \ \text{photon.s}^{-1}$
axion power $\sim 1 \ \text{photon.s}^{-1}$

$$SNR_{SMPD} = \frac{P_{axion}}{\hbar\omega} \sqrt{\frac{t_{SMPD}}{\alpha_{DC}}} \quad darkcount \quad \sim 5 - 50 \ click.s^{-1}$$

$$\frac{t_{lin}}{t_{SMPD}} = \frac{1}{4} \frac{\kappa_{axion}}{\alpha_{DC}} \sim 50 - 500$$

Thank you!

Quantronics Group, Service de Physique de l'Etat Condensé, **CEA Saclay**