Intel® FPGA with Integrated ADC/DACs

REW All Digital Beamforming Transformation

- All digital beam forming required for future threats including swarm of drones
- Reduction in SWAP* requirements drive need for heterogeneous integration
- Thousands of array elements in a given system with data converter at each element will radically change market dynamics

EMIB embedded multi-die interconnect bridge

https://www.intel.com/content/www/us/en/architecture-and-technology/programmable/analog-rf-fpga.html https://www.intel.com/content/www/us/en/architecture-and-technology/programmable/fpga-integrated-data-converter-solution-br ief.html

3

EMIB technology

- Allows integration of high-performance analog converter chiplets regardless of process node, foundry, or IP provider with Intel® FPGA
- Provide lower latency versus JESD204c
- Provide lower power per bit versus JESD204c

Chiplets

https://www.intel.com/content/www/us/en/products/docs/programmable/direct-rf-series-fpga-white-paper.html

5

AIB Overview

- Support peer-to-peer high bandwidth parallel communication
- Open to download from Intel Website
- Versatile per-channel clocking in both directions
- Streaming or transactional protocols can be implemented on top of AIB
- AIB's flexible IO cell permits arbitrary TX, RX, clock and control mapped by the protocol layer above

Why Direct RF?

Direct RF Architecture

Least analog circuitry required Highest performance Smallest form-factor Fastest time-to-market, lowest risk ~32GHz of BW

Direct IF Architecture

Moderate analog circuitry required Modest performance Large form-factor Slow time-to-market, medium risk ~1 to 2GHz of BW

Superheterodyne Architecture

Most analog circuitry required Lowest performance Largest form-factor Slowest time-to-market, most risk ~100 to 200MHz of BW

https://www.intel.com/content/www/us/en/architecture-and-technology/programmable/analog-rf-fpga. html

7

Direct RF Sampling Advantages

- Eliminates analog tuner circuitry
- Provides real-time frequency agility
 - Multi-mode radar / EW
- Provides wider bandwidths
 - EW countermeasures

Advantage in Size, Weight, Power, Cost, and Capability

Up to 90+% Savings in Size

Integration

Intel® Stratix® 10 AX and Intel Agilex® 9 FPGA Direct RF-Series

Intel® Stratix® 10 AX FPGA

Intel® Stratix® 10 FPGA 2.8 MLE + 8-Channels ADC/DAC

Intel Agilex® 9 FPGA Direct RF-Series

Intel Agilex® FPGA 1.4 MLE + 4-Channels ADC/DAC

Intel Agilex[®] 9 FPGA Direct RF-Series

Intel Agilex® FPGA 2.7 MLE + 8-Channels ADC/DAC

Intel[®] Programmable Solution Group

Devices familly

• Agilex based

Product Name	Logic Elements (LE)	18x19 Multipliers	# of ADC/DAC	Sample Rate (Gsps)	# of Bits Resolution	Embedded Memory (Mb)	Quad Core ARM	XCVR's	PCIe	Package
Intel® Agilex™ Direct RF-Series SoC FPGA AGRW014	1437	9020	4/4	64/64	10/10	190	Yes	58G PAM-4, 32G NRZ	4.0	45x32
Intel® Agilex™ Direct RF-Series SoC FPGA AGRW027	2693	17056	8/8	64/64	10/10	287	Yes	58G PAM-4, 32G NRZ	4.0	52.5x42.5
Intel® Agilex™ Direct RF-Series SoC FPGA AGRM027	2693	17056	20/16	4/12	14/14	287	Yes	58G PAM-4, 32G NRZ	4.0	56x45

Intel® FPGA with Integrated ADC/DACs

- up to 64GSPS sample rate
- EMIB technology
- AIB physical layer protocol

Overview

Logic # of Sample Rate # of Bits Embedded Product 18x19 Elements Multipliers ADC/DAC (Gsps) Resolution Memory Name (LE) Intel[®] Stratix[®] 10 AX SOC 2 A tiles 2753 11520 8/8 64/64 10/10 244 Stratix 10 FPGA 1SA28 Intel[®] Agilex™ Direct RF-Wide Series SoC 4/4 64/64 10/10 1437 9020 190 1 A tile FPGA Band AGRW014 Intel[®] Agilex[™] Direct RF-Agilex 2 A tiles Series SoC 2693 17056 8/8 64/64 10/10 287 FPGA AGRW027 Intel[®] Agilex™ Mid Direct RF-20/16 14/14 Series SoC 4/12 2693 17056 287 FPGA Band AGRM027

https://www.intel.com/content/www/us/en/architecture-and-technology/programmable/analog-rf-fpga.html

13

Schematic Representation

8 ADC and 8 DAC per device

running 64GSPS per ADC or DAC

Block diagram

Coarse DDC Coarse DUC Fine DDC Fine DUC NCOs

https://www.intel.com/content/www/us/en/architecture-and-technolog y/programmable/fpga-integrated-data-converter-solution-brief.html

Analog performance: 25GHz of instantaneous bandwidth with a 65 dBc SNR

Intel® Programmable Solution Group

Intel® FPGA with Integrated ADC/DACs board

RF performance sweeps

ADC NSD Sweep

Intel[®] Programmable Solution Group

intel.¹⁹

ADC NSD Performance Summary

ADC Spurious Demo

Fs = 51.2 Gsps Decimate by 16 RF input level = -1 dBFS Sweep (16 GHz, 19 GHz)

Intel Agilex[®] 9 FPGA Direct RF-Series Spurious Frequency Calculator

Intel A-tile ADC Sp	ur Calculato	r					
Note: predicted spur la	cations in this e	alculator are base	d on the ADC a	architectu	are. Only spur loc	ations, not	maanitude
are shown. Spurs at se	me locations m	ay have a very low	magnitude and	d not be w	isible above the n	toise floor.	
User should fill out boxes in (Drange.						
Parameter	Value	Unit Allowed ent	ries				
Fs	64	Gsps (40, 64)	1. Enter the	sample rate	P		
Fundamental	12,58496	GHz (0,1.36)	2. Enter fun	damental P	Finput frequency.		
NCO entry option	frequency	Idron down	1 3 Select to	enter NCO	hu werwerden of the	anne oten Fi	Lout 3a or 3b, acco
NCO frequency entry	12	GHz	3a Enterth	e MOThe	Wearbour		
Coarse NCO step entru	22	sten (-64.63)	3b Enter /2	nanna MOT	ahan	_	
Decimation factor	16	[drop down	4. Select de	ecimation fa	actor.		
NCO frequency	12	GHz	NCO freque	enourequity	calculated from User	inputs	
BV	4	GHz	IBW/result o	alculated fr	rom User inputs	- group.	/
		5-7 TE	ID W lesuit C	Jacouateun	ioni oser inputs.		/
				-	-		1
Highlighted any log stores a	a measure in side sh	- IPU					/
r lignlighted spur locations ar	e present inside th	elow.					/ /
						Sample	er Spur/
Harmonic Calculator		Interleavin	g Spur Calcul	ator		Calcula	ator /
	Harmonies		Gain an	d Phase	Offset Source	Sour	Source
Vamo	(GHz)	Index	Server	(GHz)	(GHz)	Inder	(GH-)
lame	(GHZ)	index	0 EPE		12 000	Index	(Gnz)
unuallientai	12 170	0	0.305	1 505	-12.000	2	-0.000
102	10.170	0	-0.415	1.505	10.000	2	-4.000
10.3	14.245	1	-1.415	2.585	-10.000	3 /	0.000
104	1.660	2	-2.415	3.565	-9.000	4	4.000
105	-10.925	3	-3.415	4.585	-8.000	5	8.000
НОБ	-0.490	4	-4.415	5.585	-7.000	6	12.000
HU7	12.095	5	-5.415	6.585	-6.000	7/	16.000
HD8	15.320	6	-6.415	7.585	-5.000	/	
HD9	2.735	7	-7.415	8.585	-4.000	1	
HD10	-9.850	8	-8.415	9.585	-3.000	/	
HD11	-1.565	9	-9.415	10.585	-2.000 /		
HD12	11.020	10	-10.415	11.585	-1.000 🟒		
HD13	16.396	11	-11.415	12.585	0.000		
HD14	3.811	12	-11.585	13.585	1.000		
HD15	-8.774	13	-10.585	14.585	2.000		
HD16	-2.641	14	-9.585	15.585	3.000		
HD17		and the second se			4.000		
HD18	9.944	15	-8.585	16.585	4.000		
HD19	9.944	15	-8.585	16.585	5.000		
020	9.944 17.471 4.886	15 16 17	-8.585 -7.585 -6.585	16.585 17.585 18.585	5.000	_	
1020	9.944 17.471 4.886 -7.699	15 16 17 18	-8.585 -7.585 -6.585 -5.585	16.585 17.585 18.585 19.585	5.000 6.000 7.000		
1020	9.944 17.471 4.886 -7.699	15 16 17 18 19	-8.585 -7.585 -6.585 -5.585 -4.585	16.585 17.585 18.585 19.585 19.415	4,000 5,000 6,000 7,000 8,000		
1020	9.944 17.471 4.886 -7.699	15 16 17 18 19 20	-8.585 -7.585 -6.585 -5.585 -4.585 -3.585	16.585 17.585 18.585 19.585 19.415 18.415	4.000 5.000 6.000 7.000 8.000 9.000		
nD20	9.944 17.471 4.886 -7.699	15 16 17 18 19 20 21	-8.585 -7.585 -6.585 -5.585 -4.585 -3.585 -2.585	16.585 17.585 18.585 19.585 19.415 18.415 18.415	4.000 5.000 6.000 7.000 8.000 9.000		
1020	9.944 17.471 4.886 -7.699	15 16 17 18 19 20 21 22	-8.585 -7.585 -6.585 -5.585 -4.585 -3.585 -2.585 -1.585	16.585 17.585 18.585 19.585 19.415 18.415 18.415 17.415 16.415	4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000		
1020	9.944 17.471 4.886 -7.699	15 16 17 18 19 20 21 22 22 23	-8,585 -7,585 -6,585 -5,585 -4,585 -3,585 -2,585 -2,585 -1,585 -0,585	16.585 17.585 18.585 19.415 19.415 18.415 17.415 16.415 15.415	4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000 12,000		

Excel-based Spur Calculator

1.415

13.415

14.000

25

EVP Spur Calculator analysis mode

ADC Spurious Performance Sweep

ADC Spurious Performance Summary

DAC IMD Demo

Fs = 64 Gsps Interpolate by 8 Two tones: RF output level = -7 dBFS Sweep tone spacing, level, and $f_c = (12 \text{ GHz}, 18 \text{ GHz})$

DAC IMD Sweep

DAC IMD Sweep

MultiView	Spectrum	× Ph	ase Noise	×					•
Ref Level 0.00	0 dBm	RBW 1 MI	Hz						SGL
Att	10 dB SWT 5.6	6s ≎VBW 1kł	Hz Mode Auto	Sweep					O LAD Clow
1 Frequency 5	weep							M1[1]	
								MILII	14 12600 GHz
								M2[1]	-20.22 dBm
								WZ[1]	15.86310 GHz
			1 M I			M2			15100510 012
-70 dBm	7 1								
-80 d8m-							. La		introduction of the
	a far alablar have a far a far	the man and the second	ad land	we make to a farmer have	مستقيرليه الالمحداقة محس	manipul			- three and many and
-100 dBm									
-110 dBm-									
CE 15.0 GHz			1001 nt	s	80	0.0 MHz/			Span 8.0 GHz

DAC IMD Sweep

Ref Level 0.00) dBm Offset	1.00 dB . RBW	1 MHz	~ ~					SGL
Att	O dB SWT	5.6 s 🗢 VBW	1 kHz Mode	Auto Sweep					
Frequency Sv	veep								•1AP Clrw
								M1[1]	-18.96 dBm
									15.67930 GH
								M2[1]	-19.16 dBn
					Mim	2			15.76720 GH
30 dBm									
i0 dBm									
							11		
			11						
	. 1								1
rath marker and	IL decline Ster Brown	here a la secondardan	1. Hold Halles Harry		le la	Whill have been and	Jul - la - la - la la	relifier and the	aband a find
An JELL an analytic	I offer and be descent		where it is the first of	and the state hast					
110 dBm									

DAC IMD Performance Summary

ADC/DAC details: 64Gsps with 25GHz of instateneous bandwidth and with a 65 dBc SNR

Data converter chiplets include Numerically controlled Oscillators (NCOs) and integrated Digital Up Converters (DUCs) and Digital Down Converters (DDCs) that eleminate a substantial amount of analog circuitry

Tile architecture

Clocking

- Clock Distribution Network
- External clocking
- Per channel CMU pll

AIB

- Data flexibility
- 1Tbit bandwidth

Differential inputs

• A wideband balum is used to convert from common mode to differential inputs

Intel Agilex[®] 9 FPGA Direct RF-Series Evaluation Platform (EVP)

Intel Agilex[®] 9 FPGA Direct RF-Series Development Kit

ADC NSD Demo

Fs = 64 Gsps No decimation RF input level = -10 dBFS Sweep entire first Nyquist zone

