

INSTITUT POLYTECHNIQUE DE PARIS

SiW-ECAL for CALICE, LUXE and Higgs Factories

Vincent Boudry

Institut Polytechnique de Paris for the **CALICE SiW-ECAL groups**

GDR DI2I | Subatech | 11 juillet 2023

AIDA

Introduction

Problématiques et buts : les detecteurs aux usines à Higgs

Prototypes (≤2026)

- CALICE
- LUXE

Developpements (≥2026)

pour les usines à Higgs/Top/EW (HET)

Compléments : ASICs [CdIT] DRD calo [RP]

Highly-Granular ECAL at Higgs Factories for Particle Flow Approach based detectors

//mm

UNNULUUII

Full Reconstruction of single particles

- Charged measured mostly from trackers
- Neutrals only measured from calorimeters
- ⇒ Large Tracker
 - Precision and low X₀ budget
 - Pattern recognition
- ➡ High precision on Si trackers
 - Tagging of beauty and charm

Large acceptance

 Highly Granular Imaging Calorimetry

Vincent.Boudry@in2p3.fr

3/30

Particle Flow Detectors at Higgs Factories

Particle Flow ECAL should : spot tracks & showers from charged (h[±], e[±]) measure Photons in jets & Tau physics ($\gamma vs \pi_0$) measure 2/3 of neutral hadrons interacting in the ECAL measure Time-of-Flight (10's ps)

Vincent.Boudry@in2p3.fr GDR DI2I | Subatech | 11 juillet 2023

120

An Ultra-Granular SiW-ECAL for experiments

Particle Flow optimised calorimetry

- Standard requirements
 - Hermeticity, Resolution, Uniformity & Stability (*E*, (θ,φ), t)
- PFlow requirements:
 - Extremely high granularity
 - Compacity (density)

Vincent.Boudry@in2p3.fr

SiW+CFRC baseline choice for future Lepton Colliders:

- Tungsten as absorber material
 - $X_0 = 3.5 \text{ mm}, R_M = 9 \text{ mm}, \lambda_1 = 96 \text{ mm}$
 - Narrow showers
 - Assures compact design
- Silicon as active material
 - Support compact design: Sensor+RO≤2mm
 - Allows for ~any pixelisation
 - Robust technology
 - Excellent signal/noise ratio: ≥10 Intrinsic stability (vs environment, aging) Albeit expensive...
- Tungsten–Carbon alveolar structure
 Minimal structural dead-spaces
 Scalability

To be assessed

by prototypes

Modular & Transverse Constraints

Timeline of SiW-ECAL Prototypes

(40+24)

× 45

Detector slab (x30)

Physical (2005-11)

- 1×1 cm² on 500µm 6×6 cm²
 Pad glued on PCB
 Floating GR
- × 30 layers (10k chan).
- External readout
- Proof of principe

Technological (now)

- Embedded electronics
 - Power-Pulsed, Auto-Trig, delayed RO
 - $S/N = (MPV/\sigma_{Noise}) \ge \sim 12 \text{ (trig)}$
- Compatible w/ 8+ modules-slab
- 5×5 mm² on 320–650µm 9×9 cm² We are here

GDR DI2I | Subatech | 11 juillet 2023

• 8k (slab) ~ 30k (calo) channels

Pilote
Full Detector

'dead space free' Carbon Fibre-W

Structure

- 1M
 70M channels
- on 750 μm 12 $\times 12$ cm² 8" Wafers ?
- Pre-industrial building
- Full integration (⊃ cooling)
- Final ASIC

x 2

MEGA Microelectronics SKIROC2 / 2A Analogue core

Vincent.Boudry@in2p3.fr GDR DI2I | Subatech | 11 juillet 2023

- 64 channels
- Auto-triggered
 - per cell adj.
 - 1 cell triggers all
- Preamp
 - + 2 Gains + Auto-select + TDC (~1.4ns)

- 15 (×2) analogue memories
- Dyn range 0.1 ~ 2500 mips
 - mip in 320 µm (4 fC)
 - 12 bits ADC's
- 616 config bits
- Low consumption
 - 25 μW/ch with 0.5% ILC-like duty cycle
- Power-Pulsed

FEV's : 15 years of R&D

Most complex element: electro-mechanical integration

- Powering, Distrib / Collect signals from ASICs, Analog & Digital with dyn. range ≥ 7500
 - Single End operation \rightarrow Chaining for 8–10 boards
- **Mechanical** placer & holder for Wafers $\rightarrow \leq 50 \mu m$ lateral precision, flatness
 - $\Rightarrow \leq 50\mu$ m lateral precision, nathess
- Thickness constraints → Calorimeter Compactness

Milestone	Date	Object	Details	REM	
1 st ASIC proto	2007	SK1 on FEV4	36 ch, 5 SCA	proto, \leq 2000 mips	
1 st ASIC	2009	SK2	64ch, 15 SCA	3000 mips	
1 st PCB proto	2010	FEV7	8 SK2	СОВ	
1 st working PCB	2011	FEV8	16 SK2 (1024 ch)	CIP (QGFP)	
1 st working ASU in BT	2012	FEV8	4 SK2 readout (256ch)	S/N ≤ ~ 14 (H Gain), no Power Pulsing retriggers 50–75%	
1 st run in PP	2013	FEV8-CIP		BGA, Power Pulsing	
1 st full ASU	2015	FEV10	4 units on test board 1024 channel	S/N ~ 17–18 (H Gain) retrigger ~ 50%	
1 st SLABs	2016	FEV11	10 units	Noise issues	
pre-calo	2017	FEV 11	7 units	S/N ~ 20 (12) _{Trig,} 6–8 % masked	
1 st technological ECAL	2018	FEV11, 12 13 Compact Calo Long Slab	SK2 & SK2a (⊃timing) 8 ASUs	Improved S/N Timing enabling	
1 st working COB, new DAQ	2019	FEV-COB	2×1/4 ASUs Cont. power.	Technical	
2 nd tech ECAL	20–22	5 types FEV's	H. Gain, Cont. Power	320, 500, 650 μm	

Present 'FEV-zoo'

FEV10, 11, 12

- BGA packaging
- Incremental modifications
- From v10 -> v12
- Main "Working horses" since 2014

Vincent.Boudry@in2p3.fr

FEV-COB

- Chip-On-Board : ASICs wirebonded in cavities
 - Thinner than FEV with BGA
- Based on FEV11
 - External connectivity compatible

FEV13

- BGA packaging
 - Improved routing
 - Local power storage
 - Different external connectivity

Compact DAQ readout

"Dead space free" granular calorimeters $\rightarrow \sim 30$ mm space ECAL-HCAL

- Compact DAQ
- in use in BT since 2019

LabWindows + scriptings

- Full debug system
- - Combined running

Acquisition software

Written in C under Labwindows CVI

- Handle whole detector
- Two sides with 15 SLABs
- 5 ASU per SLAB
- Make advanced measurements
- Hardware automatically detected
 - Number of SLAB
 - FEV type + number of ASU
- Slowcontrol:
 - All parameters programmable
 - Integrated analysis Vincent.Boudry@in2p3.fr

S-Curve on FEV2

CALICE SiW-ECAL Technological Prototype Beam tests (... at last!)

Nov. 2021 + March 2022 : electrons of 1–6 GeV (4th attemp...)

- 15 layers of 1024 cells + Compact "ILD-like" DAQ
 - 5 types de VFE boards (FEV10, 11, 12, 13, COB) \otimes 3 Wafer thicknesses (320, 500, 650 $\mu m)$
 - 2 Tungsten absorbers configurations.
- ~3 weeks of commissioning and training
 - Mechanical structure (adding or removing the tungsten plates)
 - Hold values, Gain optimization, Threshold optimization, single cell calibration, etc
 - ~500k fits (15 boards × 16 ASICs × 64 ch × 15 SCAs × 2 gains)
 - Test of combined DAQ : ECAL + AHCAL
 - Full simulations (⊃ cell masking)
- 1st full shower profiles & resolutions
 - Filtering needed (retriggers, events splitting, ...)

13/30

Vincent.Boudry@in2p3.fr

Pedestal widths, 1st memory cells, per asic

- (Average ± Standard Deviation) of Sigmas for all 64 channels in the same chip
- Latest PCBs, with optimized routing of power distribution shows better behavior
- Slightly larger spread on COB due to a near lack of decoupling capacitors

Beam test: CERN

2 weeks in June @ SPS-H2

- SiW-ECAL + AHCAL
 - 15 layers, 1 configuration W
- Running : 75% of time :
 - e : 10, 20, 40, 60, 80, 100, 150 GeV
 - µ : 50, 150 GeV
 - π : 10, 20, 70, 100, 150, 200 GeV

Two issues:

- Increased delaminations of wafers on the edges

under investigation; main suspects:

Too much handling; Small batch production; Glue aging

- Collective wafer trigger at high energy (≥20 GeV)
 - linked to HV distribution

Vincent.Boudry@in2p3.fr

Electron

Fig. Simulation e- 10 GeV

Fig. Reconstructed e- 10 GeV

Fig. Simulation e- 100 GeV GDR DI2I | Subatech | II | UIIIeL 2023

Fig. Reconstructed e- 100 GeV

MIP calibration

or less mind

• We have good layers ...

- Homogeneous response to MIPs over layer surface
- Here white cells are masked cells due to PCB routing
 - · Understood and will be corrected

... and not so good layers

mpv layer3 xy

- Inhomogeneous response to MIPs
 - Partially even no response at all, in particular at the wafer boundaries
 - To be understood, may require dedicated aging studies
- Have since last week access to the different stages of the ASICs
- => <u>major</u> debugging tool
- In any case less good layers will be replaced in coming months

Power distribution dedicated for LONG SLAB

Expected results

In the electrical long SLAB, 8 boards are chained and due to resistivity of layer per board on analog 3.3V, we measure voltage drop along the long SLAB coupled with bandgap distribution.

 \rightarrow We decide to generate local power supply with LDO (Low Drop Out) to cancel voltage drop and reduce common noise.

New front end board FEV2.0 (2021)

Observation from previous test beam @ DESY 2018 with electrical long SLAB:

- Voltage drop
- Clock configuration integrity
- Power pulsing

New feature of FEV 2.0:

10mm

GDR DI2I | Subatech | 11 juillet 202

- 1 LDO (low drop out) per SK2A on analog power supply
- 1 LDO per 4 SK2A on digital power supply
- Add buffer on configuration clock (every 8 SK2A)
- Driving HV (up to 350V) + add filter for each wafer
- Improve shielding for analog signal and power supply

6 months delayed due to cabling problem components supply

Vincent.Boudry@in2p3.fr

SiW-ECAL for circular EW/Higgs Factories

Vincent.Boudry@in2p3.fr

Running conditions

Linear e+e- (ILC, HL-ILC, ...)

- 250 GeV (ZH), 365 GeV (tt), 500 GeV (ZHH) + [1000 GeV], *L*~cst.
- Power pulsing : 5 [10–15]Hz × 1 [2] ms

Circular e+e- (CEPC, FCC-ee) :

- 90GeV × 10⁷ fb × 5·10³⁶ cm⁻² s⁻¹ (qq × 20,000 ILC @ 250GeV)
- 150 GeV (WW) + 250 GeV (ZH)+ 365 GeV (tt)
 ~10⁴ fb × 5·10³⁵ cm⁻² s⁻¹ (gg × 5–10 ILC @ 250)

Paradigme Change: Continuum hypothesis

- ASIC, Power/Cooling, DAQ, Granularity, Precisions (E, t), New ideas...

FCC-ee parameters		Z	W⁺W ⁻	ZH	ttbar
√s	GeV	91.2	160	240 8.5	350-365 1.7
Luminosity / IP	10 ³⁴ cm ⁻² s ⁻¹	230	28		
Bunch spacing	ns	19.6	163	994	3000
"Physics" cross section	pb	35,000	10	0.2	0.5
Total cross section (Z)	pb	40,000	30	10	8
Event rate	Hz	92,000	8.4	1	0.1
"Pile up" parameter [μ]	10 ⁻⁶	1,800	1	1	1

https://indico.cern.ch/event/1064327/contributions/4893208/ Mogens Dam @ FCC Week, 10/06/2022

	Higgs	W	Z	ttbar
Bunch number	249	1297	11951	35
Bunch spacing [ns]	636	257	23 (10% gap)	4524
Bunch population [10 ¹⁰]	14	13.5	14	20
Bunch number	415	2162	19918	58
Bunch spacing [ns]	385	154	15 (10% gap)	2640
Bunch population [10 ¹⁰]	14	13.5	14	20

Snowmass2021 White Paper AF3-CEPC, arXiv:2203.09451 22/30

Detector Parameters: scaling rules

- Cell lateral size

- Shower separation (EM~2×cell size)
- Cell time resolution (1 cm/c ~ 30 ps)
 - Time performance for showers
 - » ParticleID, easier reconstruction
- Longitudinal segmentation
 - sampling fraction
 - E resolution (ECAL ~15%/ \sqrt{E})
 - shower separation/start
- ECAL inner radius; Barrel Z_{Start}
- ECAL-HCAL distance
- Barrel-Endcap distance
- Dead-zones sizes (from Mechanics, Cooling)

Number of cells \nearrow \Rightarrow Cost \nearrow (1/size²) **Cell density** \nearrow \Rightarrow Power consumption

↗

Time resolution $\searrow \Rightarrow$ Power \checkmark

threshold, passive vs active cooling dead-zones >

BEING FULLY RE-EVALUATED (→ ILD, CLD) for EW region with realistic ASIC hypothesis

Inner Radius \nearrow \Rightarrow Tracking performance \nearrow Cost $\cancel{2}^2$ (\supset Magnet, Iron) **Gaps** $\cancel{2}$ \Rightarrow PFlow performances \checkmark \bigcirc \Rightarrow Active cooling

Review of physical implication (from TeV): see Linear collider detector requirements and CLD, F. Simon @ FCC-Now (nov 2020) Physics Requirement studies @ 250 GeV: see Higgs measurements and others, M. Ruan @ CEPC WS, (nov 2018)

Vincent.Boudry@in2p3.fr

Services: integration & cooling

- Pipe insertion process introduces some efficiency loss due to the thermal contact resistance.
- The benefit remains significant with regard to a passive cooling

Thermal static CFD analysis thermal field example using Fluent with 100W extracted and water mass flow rate of 7g/s through 1,5mm ID pipe

Pipe insertion on a cooling prototype Vincent.Boudry@in2p3.fr

GDR DI2I | Subatech | 11 juillet 2023

п

5

= 2× cont. operation of a SLAB

Timing in calorimeters: 0.1-1 ns range

Cleaning of Events

[CLIC CDR: 1202.5940] adapted from L. Emberger Vincent.Boudry@in2p3.fr

Particle ID by Time-of-Flight

- Complementary to dE/dx
 - here with 100ps on 10 ECAL hits

Ease Particle Flow:

- Identify primers in showers
- Help against confusion
 better separation of showers
- Cleaning of late neutrons & back scattering.

< 5 ns ... < 15 ns ... < 50 ns > 50 ns

See Cluster timing and leakage in time at the CEPC baseline Calorimeter (Yuzhi Che)

Timing Studies

2015 CMS HGCAL CERN timing test beam

Time resolution vs S/N ratio

CALICE / ILD Bulk Timing © M. Ruan SKIROC2A TDC mean 2150 2100 2050 2000 10 count / ns 190 1.4 ns resolution

30 35

1ps=300µm 1 mm cells

(Yuzhi Che) GDR DI2I | Subatech | 11 juillet 2023

0 5 10 15 20 25 time difference[ns]

Detector optimisation for Higgs Factories

Continuous running ≠ Pulsed runnning

- Power × 100 !
- Low energy (90 GeV)
 - Lower energy less focused jets
 - Lower granularity needed (1–2 cm OK ?)
 - Lower dynamic range
 - Other criterions ? Tagging

... but not so for the rest ($\geq \sim 250 \text{ GeV}$)

- Reduce the number of layers + thicker sensors
 - See "Small ILD" model
 - − 6''×500µm wafers \Rightarrow 8'' × 725 µm (resolution

1/⁵√d) Vincent.Boudry@in2p3.fr

One size fit all ?

- Have a dynamic granularity ?

- Have a semi-digital readout ?
 - Hit counting for low energy
 - E measurement for high energies

Use full simulations to estimate fluxes :

- Occupancy, Power, Data ...
- ... for various hypothesis (\pounds , Granularity, ASIC technology, DAQ scheme, ...)

New ASIC:

DRD6 Common readout ASICs proposal [AGH, Omega, Saclay]

- Develop readout ASIC family for DRD6 prototype characterization
 - Inspired from CALICE SKIROC/SPIROC/HARDROC/MICROROC family
 - Targeting future experiments as mentionned in ICFA document (EIC, FCC, ILC, CEPC...)
 - Addressing embedded electronics and detector/electronics coexistence + joint optimization
 - Detector specific front-end but common backend
 - \Rightarrow allows common DAQ and facilitates combined testbeam
- Start from HGCROC / HKROC : Si and SiPM
 - Reduce power from 15 mW/ch to few mW/ch
 - Allows better granularity or LAr operation
 - Extend to LAr (cryogenic operation) and MCPs (PID)
 - Remove HL-LHC-specific digital part and provide flexible auto-triggered data payload
 - Several improvements foreseen in the VFE and digitization parts
- Several other ASICs R/Os also developed in DRD6 and it is good !
 - FLAME/FLAXE, FATIC...
 - Waveform samplers : commercial or specific (e.g. SPIDER)
 - DECAL

CdLT : future chips DRDI 10 jul 23

Low Power

- Timing ?

Low occupancy

- Self-trigger
- Less memory
 - if continuous readout

Optimized dynamic range (silicon)

Silicon Sensors

Cost driver

- ~30% of the total cost of the SiW-ECAL
 - → Units Cost reduction(CALIIMAX proc
- Decoupling of Guard Ring (Square Eve
- new design of ILD detector

Command Sensors (@ Hamamats

- \triangle Minimal cost of Command ≥ 20k€
- direct contact with HPK engineers
- Possibility of design for 8" in 186mm alveola 320 → 550, 650 → 725 µm ?

- "Square events"
- cross talk between guard rings and pixels

'quantum unit' of ILD dimensions (here 6" wafer)

pixel

UNV-LUNL, UNLIVE LUFA REview 2018

Conclusions

SiW-ECAL technological prototypes

- 2022: Heterogeneous 15 layers
 - 1st full calorimeter working [DESY22, CERN22]
 - Shower seen, Detailled simulation ready
 - − Analysis on-going \Rightarrow resolutions, ...
 - Numerous emerging issues
 - gluing, HV filtering at high energy
- 2024: Uniform 15 layers
 - ➡ New VFE boards
 - Cleaner PS & Clock distributions; more uniform
 - Gluing being revisited
 - Material available.
 - To be tested in 2024
 - ➡ Provide reference sample for GEANT4
 - → With funding → "full" LUXE

Vincent.Boudry@in2p3.fr

SiW-ECAL design for HET factories

- 2023–26: Power budget & performances to be re visited
 - Occupancy, power, data fluxes (on-going)
 - → Granularity; Passive or Active cooling
 - → new ASIC attributes
 - 2024–26: PFA & Physics performances

2025–26: Blue-print for a SiW-ECAL detector for the next ee collider

⇒ planning for a pilote module @ T₀ collider-8y -5y (1 Mch, 1/60th of real detector)

semi-industrial, quality, ASICs, ...