Design of innovative diamond detectors for beam monitoring in highly radiative environment for applications in nuclear and medical physics ML Gallin-Martel*, A. André, Y. Arnoud, A. Bes, JL Bouly, J. Collot, D. Dauvergne, R. Delorme, F. Di Franco, P. Everaere, L. Gallin-Martel, O. Guillaudin, C. Hoarau, F. Lafont, A. Lacoste, E. Lagorio, C. Léonhart, S. Marcatili, M. Marton, R. Molle, JF Muraz, N. Ponchant, F. Rarbi, M. Reynaud, O. Rossetto, J. Waquet, M. Yamouni X ARRONAX M. Evin, A. Guertin, F. Haddad, C. Koumeir, V. Métivier, R. Molle, Q. Mouchard, F. Poirier, N. Servagent **C** LP2i P. Barberet, J. Jouve, S. Sorieul Ph. Laniece, AM Leite, Y. Zhu STR\$BE JF Adam, R. Serduc, S. Keshmiri F. Vianna Legros IRSN INSTITUT DE RADIOPROTECTION L. Abbassi, T. Crozes, F. Donatini, E. Gheeraert, J. F. Motte, J. Pernot J. Bousquet, E. Corne, J. Letellier, D. Nusimovici. F. Lafont, TN. Tran – Thi Antoine J. Herault, JP. Hofverberg, D. Maneval, R. Trimaud ll Inserm UGA *mlgallin@lpsc.in2p3.fr

Context

> Development of new generations of ion accelerators:

- Nuclear applications: the production of radical species for radiolysis applications
- Medical applications: hadrontherapy, flash therapies and X-ray or synchrotron radiation therapy

⇒ very precise monitoring of the beam with rapid counting in a highly radiative environment.

> The intrinsic qualities of diamond:

• speed, low leakage current, excellent SNR, resistance to radiation

 \Rightarrow an excellent candidate to meet such monitoring requirements over a wide dynamic range from a fraction of pA (single particle) up to μ A.

Diamond as beam monitors

Diamond as beam monitors

Diamond as beam monitors

Diamond detector for beam monitoring: sCVD? pCVD? DOI?

Beam monitors for on-line control of radiotherapies in cancer treatment

X-rays vs hadrontherapy

Flash therapy vs conventionnal => high doses in a very short time

Conventional X-raysor hadrontherapy→ Gy/mnFlash therapies→ 100 Gy/s

- \Rightarrow Short pulses to be monitored at high beam intensity !
- \Rightarrow High particle couting rate capabilities to be demonstrated
- \Rightarrow Bunch or train of bunches time stamps

Vectorized Internal Radiotherapy and Boron Neutron Capture Therapy (BNCT)

Radionuclides α : 223Ra, 225Ac, 212/213Bi, 211At... **Energy α : 5 – 9 MeV**

Objectives: improved dose predictions and biological effects for targeted radiotherapy

⇒ monitor low-energy ion beams for radiobiology experiments

DIAMANT – Beam monitoring @IN2P3 and for medical application : various specification lists!

40 preamps + DFC + TDC

4 diamond sCVD in mosaic or 1 pCVD

Proton beam monitoring in hadrontherapy (CAL)

Coll. Clarys UFT / Coll. TIARA / Coll. ClaRyS - LaBeX PRIMES (P. Everaere PhD thesis)

- Single particle
- XY spatial resolution ~1 mm
- Time resolution ~100 ps

Diamond beam hodoscope in single proton regime (hadrontherapy monitoring): the 100 ps time resolution challenge

Diamond for X-rays µ-beams: charge integration + linear response over a wide dynamic « Flash therapies »

Micro Beam Radiation Therapy (MRT)

R&T DIAMTECH/ IDSYNCHRO UGA / PAIR TUMC MRT-CLINTRA INSERM

Innovative radiotherapies using spatially segmented photon beams
Energy 50-200 keV@ ESRF + very high dose rate 10⁴ Gy/s

1^{rst} version: 32 channels (QDC) in discrete elec.

Final version : 158 channels 20 QDC ASIC 8 diamonds in a row

Diamond beam monitor for high proton beam intensities : train couting and time stamps towards « proton FLASH therapies »

Study of linearity as a function of beam intensity: sCVD versus pCVD

Each point = ACQ on a single train to avoid any influence of the fluence

R. Molle, PhD Thesis LPSC ARRONAX SUBATECH, ANR DIAMMONI

sCVD: Linear response from 1 Gy/s up to 10² kGy/s

pCVD: Linear response from 1 Gy/s up to 4 10² kGy/s

☺ for monitoring proton beams in FLASH conditions with typical dose rate : ~ 300 Gy/s

High proton flux : diamond signal analysis and simulation towards a better understanding of charge collection mechanism

July 10-12 2023

GDR DI2I Assemblée Générale SUBATECH Nantes

High fluences : what's the limit for diamond continuous exposure in a ion beam?

Objectives of the "aging" experimental set-up:

ANR - DIAMMONI

- \succ each area corresponds to a beam intensity (= flux = φ)
- > Irradiation of each zone until obtaining an identical cumulative fluence (= ϕ) between the zones at the end of the experiment

High fluences : diamond aging studies with 68 MeV alpha particles

This diamond was irradiated with 68-MeV alpha particles at ARRONAX with a fluence of approximately 10¹⁵ ions/cm²

The absolute values cannot be compared since the beam intensity is not the same

The current scales are in relation to the X-beam intensities in the two experiments (before vs after irradiation)

=> The main observation is that the XBIC is close to the leakage current in the irradiated areas which means that the charges are no longer collected.

Binocular observation Black traces of irradiation on the PCB

The diamond is colored in green typical of GR1 type defects

Photoluminescence spectra

VEEL COLAMFAB F. Laffont, TN , Tran – Thi XBIC setup BM05 ESRF

In blue the areas of less effective

-0.50 **XBIC mapping at ESRF** VEEL After annealing (1000 °C for 6 hours) Champab Diamond has recovered

To understand if the origin if this degradation, Bragg diffraction imaging was performed. charge collection

No irradiation-related structural defects are visible => the vacancies created by the irradiation are too far from one another to induce a significant deformation of the crystalline mesh.

From simple calculations, we estimated the displacements per atom to be of the order of few p.p.m.

ANR - DIAMMONI

High fluences : diamond aging studies with 68 MeV alpha particles

D

С

Impact of flux on Charge Collection Efficiency (CCE)

R. Molle PhD thesis ANR DIAMMONI

ARRONAX

68-MeV alpha particles

dt = 50µs dit : variable => <I> = cste Duration : ~30 mn for each A to E point

With increasing flux, charge collection decreases.

The fluence creates damage in the detector.

→ It results in the creation of traps that disrupt the collection of charges.

 \rightarrow CCE drops faster with fluence at higher flux.

10¹³ alphas/cm²/s = 0.1 alpha/nm²/s: interplay between vacancy creation and stable electronic defects (charge carrier traps)?

sCVD and pCVD diamond response to 70 MeV protons: aging studies

Point Fluence Flux A ~10 ¹⁵ 2,5 10 ¹⁴ B ~10 ¹⁴ 9,9 10 ¹³ C ~10 ¹³ 4 10 ¹³	Y
A ~10 ¹⁵ 2,5 10 ¹⁴ B ~10 ¹⁴ 9,9 10 ¹³ C ~10 ¹³ 4 10 ¹³	Y
B ~10 ¹⁴ 9,9 10 ¹³ C ~10 ¹³ 4 10 ¹³	Y
	ζΥ
D $\sim 10^{12}$ 1.6 10^{13}	
E $\sim 10^{11}$ 6.3 10^{12} 6.3 10^{12} $dt = 50 \mu s$	
Charge in a 50µs-train of 70 MeV protons as a function of fluence	
Flux in p/cm ² /s Ref. Proton energy	k
1.75 Point A sCVD Point A sCVD Point B sCVD (MeV)	cm²/p/μm
A Point C sCVD A Point D sCVD	4,4 10 ⁻¹⁸
1.50 SCVD - Point A - Flux = 2.5E14 RD42 coll. 70	2,6 10 ⁻¹⁸
Question to be answered: This work 70 (A point)	3,1 10 ⁻¹⁸
Literature \uparrow and $\uparrow\uparrow$: \bigcirc \rightarrow k = k (φ) with φ = flux? RD42 coll. 800	1,67 10 ⁻¹⁸
O_0 G_0 O_0	1,0 10 ⁻¹⁸
$\frac{c}{b}$ \frac{c}	tectors in
$\frac{1}{3}$ $\frac{1}$	124-131
	1. 70
C MeV protons, fast neutrons and 300 MeV pions », Sensors 2020, 20, 664	amond to 70
S Proton therapy:	
^{scvp - Point D} Flux = 1.6E13	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\rho = aharaa \phi = fluonco 0, k = Csta = fit parameters$	

Conclusion

> The development are in connection with collaborations established at IN2P3, CNRS (INP), CAL, IRSN and ESRF

> It has been done in the context of interdisciplinary research IN2P3 - INP skills exchanges take place between

- characterization: sources (labs) + accelerator beams @ IN2P3 AIFIRA / GIP ARRONAX, XBIC @ ESRF
- Instrumentation (IN2P3 labs, Institut Néel, etc.)

> Diamond beam monitors + FE electronics and DAQ have been developed

- Various specifications (time resolution, continuous or pulsed beams, single particle counting up to 10⁶ particle in a bunch)
- Diamond beam monitoring satisfies the FLASH therapy condition (linear response in the range 1 to 4 10⁵ Gy/s with X-rays and proton beams)
- => the proposed detection systems will bring significant added value to the transfer of high dose rate flash radiotherapy to clinical trials

Simulation + aging studies are on going for a better understanding of the signal formation and the impact of very high fluences on charge collection

THANKS FOR YOUR ATTENTION !

