Modelization, characterization and optimization of HEMT-based charge readout pre-amplifier

for the RICOCHET collaboration

Jules Colas presenter

RICOCHET: A future low-energy neutrino observatory

RICOCHET is a France, USA and Russia wide collaboration accounting for about 50 physicists, engineers, and technicians, aiming at building the first low-energy neutrino observatory

History of CEvNS

 $CEvNS \rightarrow Coherent Elastic neutrino-Nucleus Scattering$

Predicted by Freedman in 1973 Physical Review D, 9(5), 1389.

Measured for the first time in 2017 Science, 357(6356), 1123-1126.

- COHERENT collaboration
- E^vmean ~30 MeV (spallation source)

What's next ?

- Measuring CE ν NS at reactor (lower E $^{\nu}$ mean)
- Lowering detection threshold
- Increasing precision -> % level (stat)
- Constraining new physics models

CEvNS allows small detector (-kg) to be competitive with large scale v physics experiment

RICOCHET signal/noise goal

threshold 50 eV \rightarrow **12.8 evt.kg⁻¹.day⁻¹**

Particle identification

NR/ER discrimination Event by event tagging Heat & Ionization Heat pulse timing

kg scale target mass

Salagnac & al: arXiv:2111.12438

We have multiple HEMT-based ionization readout

The common source amplifier is simple

The common source amplifier model, for one channel

9

Signal/Noise propagation

1. In **any case** one can write :

$$V^{A}(f) = h_{1}(f)E_{n}^{A}(f) + h_{2}(f)E_{fb}^{A}(f) + h_{3}(f)I_{n}^{A}(f) + \dots$$

$$= \sum_{i} h_{i}(f)U_{i}(f)$$
2. If we suppose **independent sources**:

$$|V^{A}(f)|^{2} = \sum_{i} |h_{i}(f)|^{2}U_{i}(f)|^{2}$$
Power Spectral
Density of noise
sources and signals
$$|V_{n}(f)|^{2} = i_{0}^{2} + i_{a}^{2}f$$

$$|I_{n}(f)|^{2} = i_{0}^{2} + i_{a}^{2}f$$

$$|I_{n}(f)|^{2} = 333a$$

$$|L_p(f)|^2 = 4k_b T_{p} R_{fb} \qquad |I_n(f)|^2 = t_0^2 + t_a^2 f_b^2 \qquad |I_s(f)|^2 = 333q$$

$$|E_{fb}(f)|^2 = 4k_b T_{fb} R_{fb} \qquad |E_n(f)|^2 = e_0^2 + (e_a^2/f) + (e_b/f)^2$$

Common source models for planar and FID detectors

PL38

FID₃₈

Using Sympy for symbolic solving of Millman equation system is convenient and versatile

Resolution optimization (RMS)

time [s]

Stable high value resistor at ~10 mK difficult to find

 \rightarrow Maxed at ~800 MOhms

2 nF capacitor validated at 10 mK

→ Low impact on resolution between 2 nF and 10 nF... Main way to improve resolution !

Take away message

- 1) Modelization allows for **components optimization**
- 2) **20 eVee achievable** with PL38 and FID38 detector topology
- 3) This approach is **suitable for other detectors** : we only need the C^m matrix !
- 4) **R&D to reduce Cp still ongoing** (thermalization issues, ...)
- 5) ~30 eVee RMS resolution achieved already using common source !

Using CEvNS as a probe for new physics searches

CEvNS is a great probe of the standard model of particle physics in the electroweak region Needs low energy neutrinos to increase new physics detection significance Complementary to the Coherent science program

RICOCHET at ILL research reactor

The H7 site

- Power: 58 MW
- Baseline: 8.8 m
- Flux: 10¹² cm⁻².s⁻¹
- E^{ν}_{mean} : ~3 MeV
- ~13 CEnNS evt/kg/day
- ~15 m.w.e

- Magnetic fields
- Vibrations
- Reactogenic backgrounds
- On/Off modulation

Repurposing of STEREO casemate

~1.85m

Get all separate contributions

Vary parameters

