

BINGO active veto

Hawraa Khalife (Postdoc at IRFU/CEA) GDR DI2I 10–12 July 2023 @ SUBATECH (Nantes)

double beta decay

Two-neutrino mode: 2νββ Neutrinoless mode: 0νββ

$$
(A,Z)\rightarrow (A,Z+2)+2e^-+2\overline{\nu}_e
$$

- It can occur for even-even nuclei
- Allowed in the SM
- It is energetically allowed for 35 nuclides and has been observed in $1/3$ of them $(^{48}Ca, ^{76}Ge, ^{82}Se, ^{96}Zr,$ ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd, ²³⁸U)
- Extremely long half-life $T_{1/2} \sim 10^{18} 10^{24}$ yr

 $(A, Z) \rightarrow (A, Z + 2) + 2e^{-}$

- Lepton number violation
- Neutrinos are massive Majorana particles ($\bar{v} = v$)
- Measure $T_{1/2}^{0V}$ that will lead to effective Majorana neutrino mass m_{BB} measurement

Sensitivity to effective Majorana mass

number of background counts $M \times T \times \Delta E$ *=*

 $b:$ background index $M:$ detector mass $T:$ time of measurement ΔE : energy resolution of the detector (FWHM**)**

BINGO aims to reduce the background in the region of interest, which is one of the most limiting factors for current and future 0ν2β bolometric experiments

Bolometric technique (Dual read-out)

 $\mathsf{Li}_2\mathsf{MOO}_4$ ($^{100}\mathsf{Mo}$) and TeO₂ ($^{130}\mathsf{Te}$) with $\mathsf{Q}_{\beta\beta}$ **at 3034 keV and 2527 keV respectively**)

11-07-2023 H. Khalife – BINGO active veto 4

Mitigating the background

α surface contamination

- Li₂MoO₄ (scintillator): dual heat-light readout
- TeO₂ (bad scintillator): Cherenkov light detection using Neganov-Luke (NL) light detector (proposed by BINGO)

β Surface contamination

- New technology: surface sensitive detectors (proposed by CROSS)
- **Use an active shield (the crystal should be facing the veto)**

$2v2\beta$ pile up

- Li₂MoO₄: increase light detector speed and signal to noise ratio (NL LDs)
- TeO₂: 100 times lower rate than 100 Mo

γ radioactivity

- Detector holders: fine selection and reduction of materials (new assembly design proposed by BINGO)
- **Shields and external materials: use an active shield**

The BINGO veto

- An active inner shield will be used to surround the $Li₂MoO₄$ and TeO₂ towers
	- Suppress the external gamma background and reject surface radioactivity from the crystals that face the active shield
	- The background reduction will be achieved through anti-coincidence between the veto and $\text{Li}_2\text{MoO}_4\text{/TeO}_2$
- The shield will be composed of BGO scintillator (initially $ZnWO_a$ was chosen):
- Each bar (in fact two bars on top of each other) will be read by two light detectors (with Neganov-Luke effect for signal amplification)
- A reflecting material will be added on the lateral side of the veto to increase light collection in LDs
- On the internal side of veto, facing the crystals, a material will be added that should **not** be an α stopper and that should prevent scintillation light from BGO to reach $Li₂MoO₄$ and TeO₂ LDs (Al, Au , ...?)

BGO internal ²⁰⁷Bi contamination

- BGO can show a significant internal ²⁰⁷Bi contamination up to 300mBq/kg
- A careful selection of the raw materials for growing BGO is ongoing from different providers worldwide. Different samples are being screened to select the ones with lower ²⁰⁷Bi contamination (some samples have shown good radiopurity)
- **MC simulation is ongoing to see the effect of ²⁰⁷Bi contamination on the experiment**

 $Li₂MoO₄$ and TeO₂ towers

How does the veto work

The crystals on the periphery will be exposed directly to the veto

• If a 2615 keV γ deposits a small amount of energy in the surrounding material (~80 keV) and the rest in TeO₂ \rightarrow background in ROI

1

- Thanks to the active veto and the LDs, these events can be rejected:
	- The energy deposition in the active veto will lead to scintillation light detected by the LD
	- Using anti-coincidence these events can be rejected from TeO₂

2

• Some surface contamination on the crystal can be dangerous if part of the energy escapes. This can also be rejected by anticoincidence with the veto

11-07-2023 H. Khalife – BINGO active veto 9

Requirements

For this to work, a Neganov-Luke LD is needed:

- Higher signal to noise ratio in order to achieve a low enough energy threshold in LD
- 50 keV energy threshold in BGO is required
	- It corresponds to the dangerous small energy deposition of the 2615 keV line in BGO
- 50 keV in the BGO scintillator corresponds to a few keV in LD
	- Few keV in LD is achieved by taking into account the expected gain from NL effect (10-20)

LDs

Prototype test

Uranium α source deposited on TeO₂ to produce surface contamination (at 4.2 and 4.8 MeV)

- 2 BGO crystals (~1.6kg each)
- 2 normal LDs facing each BGO
- TeO₂ crystal facing both BGOs
- Reflecting foil on the back
- The test was performed aboveground in a pulse-tube cryostat at IJCLab (Orsay)

Efficiency study at the expected threshold

- 1000 fake pulses at different energies were injected into the data to estimated the efficiency after data processing
- The required energy threshold for the veto scintillator should be around 50 keV, which corresponds to around 0.3-0.4 keV in LD when taking into account the light yield (LY) which is about 7 keV/MeV

Hunting the α source with coincidence

Status of the veto

- A new veto design is being produced
- Studying the best reflection materials is still ongoing
	- A reflecting material will be added on the lateral side of the veto
	- A reflecting material will be added between the two bars (possibly)
	- On the internal side of veto, facing the crystals
- We have now hints of good providers for the raw materials to make BGO
- Four new trapezoidal bars to be produced by autumn 2023
- A section of the final veto design (two trapezoidal BGO bars) will be measured above-ground in a cryostat to test the mechanics/NL LD/ reflecting materials in September 2023

Conclusions

- BINGO introduces innovative technology for background rejection
- For the first time, an active veto will be developed to surround the double-beta bolometers
- It will be used to reject external gamma radioactivity, in addition to surface radioactivity from the crystals facing the veto
- Prototype tests and MC simulation are still ongoing before moving to the final full geometry

backups

Sources of background

²⁰⁷Bi contamination

- With 328 mBq/kg, M_{vETO} = 115 kg and assuming a 5 ms coincidence time window, dead time is \sim 17%
- Desirable to reach < 100 mBq/kg \rightarrow deadtime is \sim 6%

*@ LSM for screening

TeO₂ energy spectrum

Bolometric compounds choices

 $Li₂MoO₄$

- Embeds 100 **Mo** with a $Q_{\beta\beta}$ at 3034 keV
- This crystal was validated by the CUPID-Mo demonstrator
	- Excellent energy resolution
	- High internal radio-purity
	- Easiness in crystallization
- High rate of $2v2\beta \rightarrow$ background in the region of interest (ROI) due to $2v2\beta$ random coincidences

 $TeO₂$

- Embeds 130 **Te** with a $Q_{\beta\beta}$ at 2527 keV
- This crystal was validated by the CUORE experiment
	- Excellent energy resolution
	- High internal radio-purity
	- Easiness in crystallization
- $Q_{\beta\beta}$ below the end line (at 2615 keV line of ²⁰⁸Tl) of natural gamma radioactivity
- Very poor scintillator \rightarrow no alpha background rejection

Hunting the α source with coincidence

- Events in TeO₂ are rejected if an event is found in a time window of 5ms in the light detectors.
- Accidental coincidences distribution is determined with the regions in red dashed lines since it should be the same under the peak

Hunting the α source with coincidence

Coincidences between TeO₂ and LD (meaning BGO)

- The marked events are alphas (with shared energy in TeO₂) in LD
- At 0 keV in TeO₂ we have a full alpha absorption in BGO (LD)
- At higher energies in TeO₂ the alpha energy is shared between TeO₂ and the LD
- The extrapolation of this population to higher energies in the TeO₂ leads to full alpha absorption in TeO₂