

BINGO active veto

Hawraa Khalife (Postdoc at IRFU/CEA) GDR DI2I 10–12 July 2023 @ SUBATECH (Nantes)

double beta decay

Two-neutrino mode: 2vββ

$$(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}_e$$

- It can occur for even-even nuclei
- Allowed in the SM
- It is energetically allowed for 35 nuclides and has been observed in 1/3 of them (⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd, ²³⁸U)
- Extremely long half-life $T_{1/2} \sim 10^{18} 10^{24}$ yr

Neutrinoless mode: 0vββ

 $(A, Z) \rightarrow (A, Z + 2) + 2e^{-}$

- Lepton number violation
- Neutrinos are massive Majorana particles ($\bar{v} = v$)
- Measure $T_{1/2}^{0V}$ that will lead to effective Majorana neutrino mass $m_{\beta\beta}$ measurement

H. Khalife – BINGO active veto

Sensitivity to effective Majorana mass

$$b = \frac{\text{number of background counts}}{\boldsymbol{M} \times \boldsymbol{T} \times \Delta \boldsymbol{E}}$$

b: background index M: detector mass T: time of measurement ΔE : energy resolution of the detector (FWHM)

BINGO aims to reduce the background in the region of interest, which is one of the most limiting factors for current and future $0v2\beta$ bolometric experiments

Bolometric technique (Dual read-out)

The state of the

H. Khalife – BINGO active veto

Mitigating the background

$\boldsymbol{\alpha}$ surface contamination

- Li₂MoO₄ (scintillator): dual heat-light readout
- TeO₂ (bad scintillator): Cherenkov light detection using Neganov-Luke (NL) light detector (proposed by BINGO)

$\boldsymbol{\beta}$ Surface contamination

- New technology: surface sensitive detectors (proposed by CROSS)
- Use an active shield (the crystal should be facing the veto)

$2\nu 2\beta$ pile up

- Li₂MoO₄: increase light detector speed and signal to noise ratio (NL LDs)
- TeO₂: 100 times lower rate than ¹⁰⁰Mo

γ radioactivity

- Detector holders: fine selection and reduction of materials (new assembly design proposed by BINGO)
- Shields and external materials: use an active shield

The BINGO veto

- An active inner shield will be used to surround the Li₂MoO₄ and TeO₂ towers
 - Suppress the external gamma background and reject surface radioactivity from the crystals that face the active shield
 - The background reduction will be achieved through anti-coincidence between the veto and ${\rm Li_2MoO_4/TeO_2}$
- The shield will be composed of BGO scintillator (initially ZnWO₄ was chosen):
- Each bar (in fact two bars on top of each other) will be read by two light detectors (with Neganov-Luke effect for signal amplification)
- A reflecting material will be added on the lateral side of the veto to increase light collection in LDs
- On the internal side of veto, facing the crystals, a material will be added that should **not** be an α stopper and that should prevent scintillation light from BGO to reach Li₂MoO₄ and TeO₂ LDs (Al, Au, ...?)

BGO internal ²⁰⁷Bi contamination

- BGO can show a significant internal ²⁰⁷Bi contamination up to 300mBq/kg
- A careful selection of the raw materials for growing BGO is ongoing from different providers worldwide. Different samples are being screened to select the ones with lower ²⁰⁷Bi contamination (some samples have shown good radiopurity)
- MC simulation is ongoing to see the effect of ²⁰⁷Bi contamination on the experiment

Li₂MoO₄ and TeO₂ towers

How does the veto work

The crystals on the periphery will be exposed directly to the veto

 If a 2615 keV γ deposits a small amount of energy in the surrounding material (~80 keV) and the rest in TeO₂ → background in ROI

1

- Thanks to the active veto and the LDs, these events can be rejected:
 - The energy deposition in the active veto will lead to scintillation light detected by the LD
 - Using anti-coincidence these events can be rejected from TeO₂

2

 Some surface contamination on the crystal can be dangerous if part of the energy escapes. This can also be rejected by anticoincidence with the veto

H. Khalife – BINGO active veto

Requirements

For this to work, a Neganov-Luke LD is needed:

- Higher signal to noise ratio in order to achieve a low enough energy threshold in LD
- 50 keV energy threshold in BGO is required
 - It corresponds to the dangerous small energy deposition of the 2615 keV line in BGO
- 50 keV in the BGO scintillator corresponds to a few keV in LD
 - Few keV in LD is achieved by taking into account the expected gain from NL effect (10-20)

LDs

Prototype test

Uranium α source deposited on TeO₂ to produce surface contamination (at 4.2 and 4.8 MeV)

- 2 BGO crystals (~1.6kg each)
- 2 normal LDs facing each BGO
- TeO₂ crystal facing both BGOs
- Reflecting foil on the back
- The test was performed aboveground in a pulse-tube cryostat at IJCLab (Orsay)

Efficiency study at the expected threshold

- 1000 fake pulses at different energies were injected into the data to estimated the efficiency after data processing
- The required energy threshold for the veto scintillator should be around 50 keV, which corresponds to around 0.3-0.4 keV in LD when taking into account the light yield (LY) which is about 7 keV/MeV

Hunting the α source with coincidence

H. Khalife – BINGO active veto

Status of the veto

- A new veto design is being produced
- Studying the best reflection materials is still ongoing
 - A reflecting material will be added on the lateral side of the veto
 - A reflecting material will be added between the two bars (possibly)
 - On the internal side of veto, facing the crystals
- We have now hints of good providers for the raw materials to make BGO
- Four new trapezoidal bars to be produced by autumn 2023
- A section of the final veto design (two trapezoidal BGO bars) will be measured above-ground in a cryostat to test the mechanics/NL LD/ reflecting materials in September 2023

Conclusions

- BINGO introduces innovative technology for background rejection
- For the first time, an active veto will be developed to surround the double-beta bolometers
- It will be used to reject external gamma radioactivity, in addition to surface radioactivity from the crystals facing the veto
- Prototype tests and MC simulation are still ongoing before moving to the final full geometry

backups

Sources of background

24-05-2023

²⁰⁷Bi contamination

- With 328 mBq/kg, $M_{VETO} = 115$ kg and assuming a 5 ms coincidence time window, dead time is $\sim 17\%$
- Desirable to reach $< 100 \text{ mBq/kg} \rightarrow \text{deadtime is} \sim 6\%$

Supplier6	Туре	Purity [%]	Mass [g]	Activity [mBq/kg]	Activity [mBq/kg BGO]	803 keV
SICCAS (CN)	BGO		301	173 ± 16	173 ± 16	Ν
(RU)	BGO		301	68 ± 11	68 ± 11	Ν
Alfa Aesar (DE)*	Bi ₂ O ₃	99.999	212	< 21 (95% CL)	< 16 (95% CL)	Ν
Santech (CN)	Bi ₂ O ₃	99.990	206	23 ± 6	17 ± 5	Y
Zhuzhou (CN)	Bi	99.999	460	37 ± 5	25 ± 3	Ν

*@ LSM for screening

TeO₂ energy spectrum

Bolometric compounds choices

Li₂MoO₄

- Embeds ^{100}Mo with a $Q_{\beta\beta}$ at 3034 keV
- This crystal was validated by the CUPID-Mo demonstrator
 - Excellent energy resolution
 - High internal radio-purity
 - Easiness in crystallization
- High rate of $2\nu 2\beta \rightarrow$ background in the region of interest (ROI) due to $2\nu 2\beta$ random coincidences

TeO₂

- Embeds ^{130}Te with a $Q_{\beta\beta}$ at 2527 keV
- This crystal was validated by the CUORE experiment
 - Excellent energy resolution
 - High internal radio-purity
 - Easiness in crystallization
- Q_{ββ} below the end line (at 2615 keV line of ²⁰⁸Tl) of natural gamma radioactivity
- Very poor scintillator \rightarrow no alpha background rejection

Hunting the α source with coincidence

- Events in TeO₂ are rejected if an event is found in a time window of 5ms in the light detectors.
- Accidental coincidences distribution is determined with the regions in red dashed lines since it should be the same under the peak

Hunting the α source with coincidence

Coincidences between TeO₂ and LD (meaning BGO)

- The marked events are alphas (with shared energy in TeO₂) in LD
- At 0 keV in TeO₂ we have a full alpha absorption in BGO (LD)
- At higher energies in TeO₂ the alpha energy is shared between TeO₂ and the LD
- The extrapolation of this population to higher energies in the TeO₂ leads to full alpha absorption in TeO₂