Cryogenic Detectors & associated instrumentation. - IN2P3 Overview -

GDR DI2I

-Détecteurs et Instrumentations pour les 2 Infinis-SUBATECH 10-12 Juillet 20213 https://indico.in2p3.fr/event/29808/

Alex Juillard IP2I

contribution from APC, IP2I, LPSC, IJCLab & Institut Néel

+ Cryogenic Detector ?

- basics
- Examples of running « large instrument » (with IN2P3 involvement)
 - EDELWEISS
 - CUPID-Mo
 - NIKA2
 - QUBIC

Ongoing R&D & next generation experiments

• massive bolometer & matrix

+ Conclusion

Cryogenic Detector ??

« massive » Bolometer:

- ★ ~ g → ~ kg
- Some of the fabrication step done *«by hand»*
- Particle detection « one by one »
- ✦ Main application :

Rare event detection

- Dark Matter
- 0νββ
- CEVNS

Matrice de Bolomètre :

- + 1 → 100k « pixels »
- Some of the fabrication step done *«collectively»*
- Particle detection « one by one » or by flux
- ✦ Main application :

Astro

- Sub-mm (50-600 Ghz)
- X

- ◆ Resistive
 - superconductor
 - Metal InsulatorTransition
- ✦ Magnetic
- w/ out of equilibrium mediator
 - Copper pairs in SC material:
 - Kinetic Inductance vs dN_{qp}
 - Out of equilibrium phonon can brake Cooper Pairs

Link with Quantum sensor

Cryogenic Detector ??

 $T_{bath} \sim \! 10 \; mK$ - 300 mK

R&D = absorber + thermometer + electronics (Z adaptation, gain, readout) + cryo environment

4

Ex. of instrument : EDELWEISS-III

36 * FID-800

+ Ge 820 g

- High impedance Ge-NTD thermometer (neutron doped Ge crystals)
- 4 sets of AI electrodes for charge collection
 - Simultaneous measurement of ionization & heat
 - Background active rejection

Running 2013-2023

- + 10mK Cryostat + 40 tons of shielding (PE + Pb) @ LSM
- + 3000 coax. cables (6 km)
- + 350 Si-JFET transistors@ 120K
- ★ 36*2 « Bolometers Boxes » @ 300K

Ex. of instrument : CUPID-Mo

Eur. Phys. J. C 80, 44 (2020)

5 towers of 4 detector (2018)

- ✦ Absorber Li₂¹⁰⁰MoO₄: Ø 43.8 x 45 mm, 210 g
- ✦ Light detector: Ge wafer Ø 44.5 mm x 170 µm with SiO coating
- ✦ Ge-NTD thermometer
- Simultaneous measurement of ligh & heat for alpha bkg discrimination
- Low radioactivity Cu

Cryostat, Electronics & DAQ = **EDELWEIS-III**

Ex. of instrument : NIKA2

Ex. of instrument : QUBIC

https://arxiv.org/abs/1812.00785

Technology Demonstrator @APC

- Commissioning started in Argentina (2023)
- ✦ Bolometric Interferometer
- + 300 mK Cryostat
- **248 pixels NbSi supra** (2000 on final Inst.).
- ◆ 150 GHz (+ 220 GHz on final Instr.)
- + Custom squids + ASIC cold elec (AMS 0.35 SiGe)
- + 128:1 multiplexing

Ex. of instrument : QUBIC

QUBIC on site near San Antonio de los Cobres, Argentina, at 5000m a.s.l. (inaugurated Nov. 22nd 2022)

R&D : Ge-NTD thermal sensors

Ge-NTD (IJCLab, IP2I)

Neutron doped semiconductor. Near Metal Insulator Transition.

- NTD production on french reactor feasible in France
- Production (2015) during the LUMINEU ANR (CSNSM - CEA)
- No new production planed. Contact w/ other producer.

+ R&D : Optimization

- cutting, electrodes metallization. Gluing.
- Massive test for selection and extra noise measurement
- need = few 1000s of NTDs over the next decade

Eur. Phys. J. C 80, 44 (2020)

R&D : NbSi thermal sensor

Low Impedance High Impedance

Nb_xSi_{1-x} (IJCLab)

Alloy near the Metal Insulator Transition or superconductor

- > 20 ans of development. Co-evap of thin film.
 - ★ see S. Sengupta talk
- Best result in the superconducting mode (high or low Z)
- Micro-lithography (CNRS/C2N) for both detectors matrices (QUBIC) and massive bolometers (EDELWEISS, Ricochet).
- + R&D :
 - Specific heat minimization \rightarrow Phonon traps
 - Low threshold « metastable »state for heat only event discrimination (**Superconducting Single-Electron Device** -SSED-, CryoSEL ANR project)

Four Si wafers with several phonon-trap designs were realized

Samples with TES islands \geq 5 µm are OK Samples with 2 µm TES have some problems

R&D : KIDs sensor

Kinetic Inductance Detector (I. Néel, LPSC, APC)

- = superconducting resonator
- ★ Resonance depends on the Cooper pairs density : sensitive to all interaction w/E>∆s
- + Started in 2000 by Caltec/JPL groups
- Main player in France : NIKA2, LPSC & Néel
 see S. Savorgnano talk
- + R&D :
 - Integration : more pixels !
 - Al techno is mature but the bandwidth is limited (by the superconducting gap)
 - Goal : enhance the BW to 50 650 GHz
 - → lower Tc (Tc Al = 1.4K)
 - ➡ AI-Ti or other materials
 - Phonons sensitivity
 - → Particule detection (IP2I-Néel)
 - → BullKid project (Néel)
- SPIAKID Project for visible and near IR photon detection (APC)
 - ⇒ see J. Hu talk

R&D : Massive Bolometer

3 major scientific goals :

• $0\nu^2\beta$ (double beta desintegration w/o neutrino emission) :

Prepare the future of CUORE = **CUPID**

- → CUPID-Mo @ LSM is a major input for CUPID
- ➡ Goal = 1 ton of detector with bkg discrimination
- + Dark Matter « crisis » : no direct detection so far + no new physics at LHC
 - « dead » of the « standard » few GeV SUSY WIMPs candidate
 - ➡ Focus on low mass and ALPs (Axion Like Particle)
 - ➡ EDELWEISS-SubGeV, TESSERACT proposal @ LSM
- Search of New Physics with precision CEvNS (Coherent Elastic neutrinonucleus scattering) measurement
 - Push the discrimination at very low threshold
 - RICOCHET installation started @ ILL
- Many other application:
 - → Fast neutron spectroscopy, rare decay observation, metrology, etc.

R&D : CUPID

CUPID

CUORE Upgrade with Particle Identification

- ◆ 30 institut., 100s of people
- + Long process of R&D selection
 - https://arxiv.org/abs/1504.03612
- French R&D (CUPID-Mo, IJCLab-IP2I + CEA) selected as the CUPID baseline
 - <u>https://arxiv.org/abs/1907.09376</u>
 - Luke Neganov Ge Light detectors will be produced by IJCLab
- dedicated « small » underground R&D project : CROSS, BINGO ERC project

+ lots to be done over the next 3 decades

Parameter	CUPID	CUPID-reach	CUPID-1T
Crystal	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$	$\mathrm{Li}_2{}^{100}\mathrm{MoO}_4$	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$
Detector mass (kg)	472	472	1871
100 Mo mass (kg)	253	253	1000
Energy resolution FWHM (keV)	5	5	5
Background index $(counts/(keV kg y))$	10^{-4}	2×10^{-5}	5×10^{-6}
Containment efficiency	79%	79%	79%
Selection efficiency	90%	90%	90%
Livetime (years)	10	10	10
Half-life exclusion sensitivity (90% C.L.)	$1.5 \times 10^{27} \text{ y}$	$2.3 \times 10^{27} \text{ y}$	$9.2 \times 10^{27} \text{ y}$
Half-life discovery sensitivity (3σ)	1.1×10^{27} y	$2 \times 10^{27} \text{ y}$	$8 \times 10^{27} \text{ y}$
exclusion sensitivity (90% C.L.)	$1017~\mathrm{meV}$	$8.214~\mathrm{meV}$	$4.16.8~\mathrm{meV}$
discovery sensitivity (3σ)	$1220~\mathrm{meV}$	$8.815~\mathrm{meV}$	$4.47.3~\mathrm{meV}$

CUPID – French contribution

Main French contributions to CUPID (IJCLab, IP2I, CEA/IRFU):

- Development of the Li₂MoO₄ technology (CUPID-Mo, LSM)
- Adoption of light detectors based on the Neganov-Trofimov-Luke effect for more effective background reduction (see BINGO experiment)
- Preliminary tests of crystals in the Canfranc underground facility (see CROSS experiment)
- Substantial contibutions in assembly, electronics, low radioactivity, background simulations
- Li₂MoO₄ crystallization studies (SiMAP Grenoble)

2

R&D : Tesseract project @ LSM

EDELWEISS room at LSM (May 2023)

- Potential TESSERACT layout in Modane accommodating the BINGO cryostat in the former EDELWEISS space
 - Work ongoing between US and IN2P3 TESSERACT partners
- Ideally two cryostats would be needed tom combine short (R&D) and long (DM search) cycles simultaneously
- Significant emphasis on vibrational and EM noise suppression
- Integration of dedicated low energy NR and ER calibration sources

R&D : Low Mass Dark Matter

« small is beautiful ! »

- No observation of « standard » WIMPs (M> few GeV) w/ interaction rate < 1 evt/ton.year !
- Cryogenic detector no more competitive in this region
- Focus at low mass (resolution & threshold)
- ✤ If DM = Sub-GeV WIMPs then there are a lot of them !
 - 1 kg of good detector is competive
- ✦ Axion & ALPs : Electronic Recoils
 - main background = Heat Only excess at low E
- + R&D goals: IPNL IJCLab (+ CEA)
 - HV withstand (w/o current leakage) for Luke Neganov « boost »
 - Discrimination down to a single e-/h+ pair
 - New transistor technology
 - ➡ Si-JFET → HEMT (C2N/CNRS)
- + > 10 years program

+ Coming experiment will use the EDELWEISS space (now dismantled) at LSM

Figure 1: Response of the CRYOSEL detector operated at 0 V (left) and 200 V (right). Orange: expected NR signal for a 1 GeV/ c^2 WIMP with a scattering cross-section of 10^{-40} cm². The blue and red lines correspond to the ER and heat-only backgrounds observed in EDELWEISS detectors. The shape of the NR response is sensitive to the actual quenching factor and straggling effects for this type of interaction. In right panel a rejection factor of 1000 is considered for HO events.

TESSERACT: Proposal experiment at LSM

<u>Transition Edge Sensors with Sub-Ev Resolution And Cryogenic Targets</u>

- DOE Funding for R&D and project development began in June 2020 (Dark Matter New Initiative)
- One experimental design, and different target materials with complementary DM sensitivity, all using TES
- Includes SPICE (Al₂O₃ and GaAs) and HeRALD (LHe)
- ~40 people from 8 institutions
- Actively searching for an underground lab

- Adding Ge/Si semiconductors with TES (heat) and electrodes (ion) readout
- Benefit from EDW+Ricochet Ge bolometer expertise and low-background cryogenic setup
- Ongoing discussions with IN2P3 Ricochet and EDW partners (LPSC, IJCLab, IP2I)
- Actively looking for a future cryogenic DM experiment

Prospective R&D : Ricochet

Precise Measurement of a known signal IP2I, IJCLab, LPSC, I. Néel, ILL

- Change of philosophy wrt Dark Matter
- + CEνNS measurement for ν MeV (measured in 2018 @ 30 MeV)
- Specifications goals
 - · 1 kg Ge (27*38g)
 - 20 eV ioni + 10eV chal
- some of the R&D (HEMT transistors) common w/ EDELWEISS

Fig. 5 *Left:* Contribution to the ionization resolution of the voltage noise, current noise, bias resistor (10 G Ω @ 20 mK). The total detector + cabling capacitance is 20 pF. 5 pF and 100 pF geometries have been studied. FFT of 1 keV event are shown. *Right:* Evolution of the resolution with the detector + cabling capacitance for the 5 HEMT geometries and the IF1320 Si-JFET from InterFET. Noise of the bias resistor is included. (Color figure online.)

60 MW reactor @ ILL / Grenoble
 ◆ Ricochet installation started in 2022

✦ 5-10 years program

Fig. 6 Electrostatic simulation of a Full Inter-Digitized electrodes scheme on a 38 g germanium crystal ($\phi = 30$ g, h=10 mm). The crystal is surrounded at 2 mm distance by a chassis connected to the ground (not shown). The capacitance of the 4 electrodes with respect to the ground is about 20 pF (Color figure online.)

R&D : Sub-mm astro instruments

Prospective IN2P3 GT05 :

+ Short-term goal (2019-2020):

- Maintain KID activity with existing instrument NIKA2 and KISS ensuring upgrades to increase the performance.
- Install QUBIC at 5000m site in Salta province, Argentina. Demonstrate Bolometric Interferometry on sky data

+ Mid-term goal (2020-2024):

 installation of CONCERTO (KIDs, 2021). Maintain the observations for several years.

Begin studying the design for S4-like instruments.

Data taking with QUBIC Technical Demonstrator.
 Upgrades: Multimode horns, 400 horn array, additional focal plane for 220GHz

+ Long-term goal (2024-2030):

- be ready to answer to the expectations of the S4 network. Be a valid candidate for covering the focal plane of the next generation space mission devoted to the CMB
- Large QUBIC-like instrument with KID detector array, proposed as part of the S4 collaboration
- Bolometric Interferometer in the focal plane of LLAMA

R&D activities are driven by real instruments

2023 Updates :

- NIKA2 (3000 pixel) still running on the 30m. Dedicated time for NIKA team ended. Observation proposals on the open time. Discussion ongoing for a NIKA3
- KISS has been running over the 2018-2021 period as a CONCERTO (4300 pixels) pathfinder
- CONCERTO installed mid-2021. Data taking up to end 2022. Data analysis ongoing
- ✦ QUBIC commissioning ongoing
- Budget to complete the focal plane and horn array obtained (ANR2024)
- Both APC and Grenoble teams are working on S4/SO (Simons Observatory) proposals (future telescope network, attacama & South Pole)

Prospective R&D : QUBIC

Figure 1. (Left) Schematic of the QUBIC instrument. The window aperture is about 40 cm; the cryostat is about 1.41 m in diameter and 1.51 m in height; (right) 3D rendering of the inner part of the cryostat. TES, Transition Edge Sensor.

Technological Demonstrator = 1/8 Instrument Final @ La Puna (Argentina) + programme à ~ ? ans

Fig. 2 *Left*: QUBIC cryo-mechanical structure which supports one TES focal plane at 350mK on top and the SQUID boxes at 1K below. *Right*: Architecture of the QUBIC detection chain for one focal plane of 1024 channels. (Color figure online.)

R&D: KISS & Concerto

ssé : Planck emples actuels om sur N2+K+C

Alternative : spectrométrie MPI

- Avantage : côté détecteurs simplifiée, grands plans focaux possibles
- Problèmes : vitesse, course, échantillonnage...

42

KISS « Pathfinder pour CONCERTO et spectre

Averaged sky angular resolution	3.5 arcmin	n	Number of KIDS	500
Spectral range GHz	80 - 250	GHz	Frequency resolution δ_{ν}	1.5 GHz
Quijote telescope size	2.5m		Round FOV, Diameter	1 deg
End-to-end optical efficiency	0.3		³ He- ⁴ He dilution cryostat	$100\mathrm{mK}$
# of expected observed clusters	10		Expected integration time	3000 hours

CONCERTO Installation 2021

Averaged sky angular resolution	27 arcsec	Number of KIDS	1500	
Spectral range GHz	200 - 360 GHz	Frequency resolution δ_{ν}	1.5 GHz	
LLAMA telescope size	12 m	Round FOV, Diameter	12 arcmin	
End-to-end optical efficiency	0.3	³ He- ⁴ He dilution cryostat	$100\mathrm{mK}$	
[CII] survey field size	2 deg^2	[CII] survey integration time	1500 hours	

see S. Savorgnano talk

École DRTBT, Aussois, 13/12/18

R&D Readout : discrete & ASICs

- + Cryogenic detectors need a **special readout electronics (cryo + 300K)**
- Discrete component Development (HEMT, JFET, SQUID)
 - 1K HEMT readout for Ricochet & Tesseract (IP2I-NéeI-LPSC, →J. Colas talk)
 - KIDs readout (cryo amp few K) (LPSC →C. Hoarau talk)
 - · CUPID readout (300K) : 1000s of SiJFET (italian group)
- Dedicated ASICs working at low T
 - Multiplexing CMOS AMS 0.35 T<1K for IR astronomy (SPICA IRFU)
 - Multiplexeur BiCMOS SiGe AMS0.35 T=2.5-15K for X astronomy (IRFU)
 - Multiplexing BiCMOS SiGe AMS 0.35 (→ST 130nm) T=4-40K for mm astronomy (QUBIC - APC)
 - Control and low noise Readout at 300K (outside cryostat) of a cryogenic chain BiCMOS SiGe AMS 0.35 (→ST 130nm) (APC)
 - characterization of CMOS 130nm at low T (<4K) for Ricochet (LPSC-Néel)
- + Technology obsolescence could be an issue : ex AMS 0.35um for ATHENA.
 → see M. Gonzales talk
- Multiplexing technology. MicroWave Multiplexing -> GHz band
 - *r* pixels number, same readout for KIDs & TES

Conclusion

- Cryogenic detectors have reached maturity and are integrated into complex instruments and demanding sites (underground labs, balloons, satellites, telescopes, etc.)
- Few well identified projects with high IN2P3 contributions over the next decades
- ✦ Many other projects not mentioned here
 - ➡ GRAAL, DALPs, wifiKIDs, BULLKIDs, etc.

TESSERACT: New generation TES phonon sensors

GDR DuPHY - J. Billard

- 3.5 eV (RMS) already achieved with a 10g Si detector and Tc = 41 mK
- Targeted Tc around 15-20 mK recently achieved !
 - ~100 meV threshold achievable
- Next challenge: parasitic power (vibrations, EMI, IR photons) needs to be <aW to fully reach TES sensitivity