Revue calorimétrie et photodétecteur pour l'imagerie médicale

Sara Marcatili

LPSC – Laboratoire de Physique Subatomique et Cosmologie

Assemblée Générale GDR Détecteurs et Instrumentations pour les 2 Infinis, Nantes, 10-13 Juillet 2023

Positron Emission Tomography

More events, better images... higher dose !

Many strategies to increase sensitivity

10 ps – PET

- <1.5 spatial resolution on the LOR
- No need for tomographic back-projection
- 14-fold improvement in SNR
- or 20-fold dose reduction

3 γ ΡΕΤ

- 44-Sc: β + emitter + 1.157 MeV γ
- LOR / Compton cone intersection
- Shorter scans or lower dose

Whole body PET

- Currently < 1% of available signal collected
- Lower dose
- Study of systemic disease

Hybrid imaging (PET/CT – PET MRI)

Combining functional and morphological information

Development of scintronic MCP-PMT detection modules for fast timing

- Detection of scintillation and Cherenkov photons emitted in PWO
- Direct deposition of a photocathode (n ~2,7) on the crystal surface (n ~2,3)
- Encapsulation within a Micro-Channel Plate Multiplier Tube (MCP-MT)
- Coincidence Time resolution (CTR) ~20 ps FWHM (excluding MCP-MT)

D. Yvon et al. JINST 15 (2020) P07029

Modelisation of light transmission through surfaces with thin film optical coating in Geant4

L. Cappellugola *et al.* in Conf. Rec. IEEE NSS/MIC'2021 C.-H. Sung, L. Cappellugola *et al.* accept. in NIMA 2023

Update of the optical light transport of Geant4 version 11.1 to model optical coating

L. Cappellugola et al. Technical Forum Geant4, 2022

CPPM

3 γ PET: XEMIS2 (Xenon Γ

IN Nantes ✔ Université

CITS XEMIS prototypes are made of single phase

Charge and light generated by LX Very Large acceptance for small anim Thickness : 12 cm LXe in Very precise : 0.1 mm 3D resolution on

Cathode: 24.3 kV

IN Nantes ✔ Université

cnrs

РМТ

g Systems)

Pixels at 0V: 2 x 10⁴

Around 10 FTE/year since 5 years in Subatech Tech teams and Xénon group

20000 analogical electronics channels for charge read-out Working conditions : LXe@-100 °C, P@1,2 bars, LXe density : 3

First LXe Compton Telescope designed for small animal Medical Imaging

Installed at "Nantes Centre" CHU in the CIMA Building

XEMIS2 construction scheduled : closing this year

New In2p3 colleagues very welcome Contacts : jean-luc.beney@subatech.in2p3.fr dominique.thers@subatech.in2p3.fr

Hybrid PET systems

Instrumentation en imagerie TEP préclinique UNIVERSITÉ DE STRASBOURG

Imagerie TEP/CT

Projet région/BPI Collab. Inviscan, Streb&Weil Labelisé pôle Biovalley

Module de détection (25x50mm²):

23x96 LYSO:Ce, 0.98x0.98x8mm³ 32 voies électroniques

Système:

2 anneaux de 8 modules chacun

Base commune de développement

Matrice SiPM de type S13361-3050 ASIC Imotep2 Système de mesure multivoies (charge & temps) Multiplexage par réseau de résistances Virtex 5 / Gbit Ethernet

D Brasse (david.brasse@iphc.cnrs.fr) V Bekaert, F Boisson, N Chevillon, C Fuchs, X Fang, J Sahr, R Sefri

Imagerie TEP/IRM

Projet CPER I2MT Collab. Laboratoire Icube

Contraintes: compacité & champ magnétique

Module de détection (25x50mm²):

Double couche 33x68 LYSO:Ce, 0.66x.66x4mm³ 32 voies électroniques

Système: 1 anneau de 10 modules

			1.2.2.2		
-	N. N.	- Albert 199			
	* *	. *	1.1.1	22.	* * * * * *
100	1.0				
1.0	11	. *			

ASTC.

Small animal systems: SPECT

Base commune de développement PMT H9500 256 voies ASIC Imotep1 Système de mesure multivoies (charge & temps) Virtex 5 / Gbit Ethernet

F Boisson (frederic.boisson@iphc.cnrs.fr) V Bekaert, D Brasse, N Chevillon, C Fuchs, X Fang, J Sahr, R Sefri

De trous à lames parallèles

Amélioration de l'efficacité de 0,02 to 1%

Spin-rotation

1D -> 2D : nécessité de reconstruction dédiée

Efficacité : 0,6 % (@25mm) R_E: 10,3 % (@140 keV) FOV: 50x50 mm²

Vers l'information 3D

Etude des performances intrinsèques : 2 cristaux CeBr3 (avec réflecteur ou revêtement noir) Utilisation de réseau de CNN pour la correction de linéarité Mise en place d'algorithmes et de protocoles dédiés aux acquisitions et reconstructions 3D

Gamma camera THIDOS for dose monitoring in Internal Radiotherapy

OBJECTIFS

• THIDOS : proposer de nouvelles approches instrumentales (caméra ambulatoire) et méthodologiques (analyse des incertitudes liées au calcul de la dose, système expert) visant à renforcer le contrôle de la dose délivrée lors du traitement à l'iode radioactif des maladies thyroïdiennes

MATERIELS & METHODES

Optimisation de l'ensemble scintillateur/photodétecteur

Matrice de SiPMs et électronique miniaturisée (PETSys Electronics)

Scintillateur monolithique CeBr3
Méthodes de reconstruction avancées

Optimisation du collimateur haute-énergie et du blindage

Simulation Monte-Carlo (GATE)

Etude des paramètres d'impression 3D tungstène par fusion laser sélective (collaboration UTBM, ICB, Belfort)

(collaboration UTBM, ICB

RESULTATS

- Développement du prototype clinique de la caméra ambulatoire (10x10 cm²)
- Conception et validation d'un réseau Bayésien pour l'estimation de l'incertitude sur la dose absorbée (IRSN)

Reconstruction par réseau de neurones convolutif profond

Support financier Plan Cancer (AAP Physicancer, INSERM, 296 k€, 2019-2022) et AP-IN2P3

Compton camera for nuclear waste management

Depth of Interaction

ANDRA

A. Iltis and H. Snoussi. J. Imaging 1 (2015) 45-59 AG GDR DI2I, Nantes, 10-12 July 2023

PG Imaging for Proton therapy monitoring

Many source of errors (patient's positioning, anatomical changes...) impose the use of safety margins

=> Reduced treatment efficacy

Prompt Gamma Energy Integral (PGEI)

- Detection of many simultaneous photons by large scintillators
- Integral of detected energy: PGEI method
- Fast scintillators : PbWO₄, to keep linear response at high energy deposit

Time-of-flight Imaging ARrAy (TIARA)

Grepsble

X-ray PC-CT prototype PIXSCAN

Minerva gas

anesthesia system

- F. Cassol et al. BPEX 2 (2016) 025003 ✓ A. Dawiec (2011) PhD
- ✓ H. Ouamara (2013) PhD
- ✓ M. Dupont (2014) PhD
- ✓ C. Kronland-Martinet (2015) PhD
- ✓ M. Hamonet (2016) PhD
- ✓ F. Cassol (2018) HDR

F. Cassol et al. iScience 21 (2019) 68-83

L. Portal (2018) PhD

 \succ 500 µm thick

K-edge X ray imaging

Questions ?