

OMEGA ROC CHIPs

On behalf of the Omega laboratory

conforti@omega.in2p3.fr Ecole Polytechnique – CNRS

Organization for Micro-Electronics desiGn and Applications

OMEGA Microelectronics Laboratory

 National Micro-electronics design center to address readout electronics needs for instrumentation in Particle and Astroparticle Physics: 10 CNRS staff engineers, highly specialized in low noise, rad-hard, high speed mixedsignal readout ASICs + 2 CDD engineers + 3 PHD students

ASICs produced and installed on detectors since 2006

mega

OMEGA Engineering runs

- 9 engineering runs in 10 years !
 - AMS SiGe 0,35um 2014, 2016, 2018
 - **TSMc 130nm** : 2019, 2020, 2021, 2022, 2x 2023.
 - 6-24 wafers 8" and 12" : thousands of ASICs built and used
 - Cost : 200-300 k€, shared between projects : very efficient !

LIROC

ALTIROC1

FLAME

ATIA

2019

MAROC4

ATLAS **ATLAS HGTD (Timing detector): ALTIROC**

and

2 ASICs+2 sensors/module

For the High-Luminosity phase of LHC, the ATLAS experiment proposed the addition of a High Granularity Timing Detector (HGTD) to mitigate the effects of the increased pile-up.

GDR DI2I Nantes 10-12/07/2023

ALTIROC GENEALOGY

Omega

But NOT to be fully radiation hard (against SEE)

bonded onto a sensor

itute of High Energy Physics

inese Academy of Science

ALTIROC 2 and 3 architecture

ALTIROC2&3 pixel integrates :

- Analog Front End pixel: Analog FE performance crucial
 - 1 GHz preamplifier followed by a high-speed discriminator.
 - **Two TDC** (Time to Digital Converter) to provide Time of Arrival (TOA) + Time Over Threshold (TOT) measurement
 - TOA TDC: bin of 20 ps (7 bits), range of 2.5 ns, to be centered on the bunch crossing
 - o TOT TDC: bin of 120 ps (8 bits), range of 20 ns

Digital part of the pixel

- One SRAM (Hit buffer) with a latency of 38.4 μs
- Zero suppress logic (Trigger Hit Selector and Matched Hit Buffer)
- Luminosity processing unit

EOC: readout of columns + data transfer to trigger data and luminosity data processing units

ALTIROC2 Periphery

Analog periphery: Bias, DAC for threshold, temp sensor, PLL, Phase Shifter, clocks receivers, data transmitters (up to 1.28 Gb/s)

Digital periphery:

- 320 Mbit/s fast commands decoder
- Trigger Processing unit: Modified in Altiroc3: Reads time data from pixel matrix and packs data into frames before serializing them
- Hit data transmission: Average data to be transmitted depends on radial position: 320 Mb/s, 640 Mb/s, **1.28 Gb/s**
- Slow Control: I2C link, 1024 * 8-bit registers (Triplication + auto correction)

GDR DI2I Nantes 10-12/07/2023

Main challenges: technical difficulties

Altiroc looks "similar " to pixels ASIC such as ITK and Timepix ASIC but

Minimum Charge Qmin/ Detector capacitance Cd

- Altiroc: Qmin/Cd ~ 500 μV with Cd ~4 pF (1300 x 1300 μm2) and Vth min= 2 fC
- ITK (no time measurement), Timepix4: Qmin/C > 2 mV with Cd ~ 50 fF (50 x 50 μ m²) and Vth min = 0.1 0.2 fC

Preamp BW

- Altiroc: 1 GHz
- Timepix4: ~ 20 MHz

TDC bin

- Altiroc: 20 ps
- Timepix4: 200 ps

Power dissipation and technology

- Altiroc: 300 mW/cm2 + techno CMOS 130 nm
- Timepix4: 600 mW/cm2 + techno CMOS 65 nm
- ITK: < 1 W/cm2 + techno CMOS 65 nm

Cd: detector capacitance t $_{10_{90}PA}$: rise time of the PA t_d= drift time of the detector e _n preamp noise density 1 МІР 500р 700р 15.2 µА

Altiroc2 pixel: SRAM Latency of 38.4 µs to cope with 0.8 MHz readout bandwidth

ALTIROC2 Performances

9

HGCROC: ASIC for the CMS High Granularity Calorimeter

Full system maintained at -30°C

- ~ 640 m² of silicon sensors. 6.1M Si channels
- ~ 370 m² of scintillators, 240k SiPM + scint-tile channels
- **Active Elements**
 - Electromagnetic calorimeter (CE-E): Si, Cu/CuW/Pb a
 - Hadronic calorimeter (CE-H): Si & scintillator, steel ab ٠
- **New Front-end electronics**
 - Two versions: Silicon and SiPM
 - Rad.tolerant (200 Mrad, 1.10¹⁶ neg / cm²) ٠
 - Power consumption: **15 mW** per channel ٠
 - Noise: 0.4 fC
 - Charge: **0.2 fC** to 10 pC (**Cdet= 47 pF**)
 - Pileup mitigation: Fast shaping (peak < 25ns),
 - Precise timing capability

(100 ps at 10 MIPs (15–30 fC) and a floor below 25 ps)

Silicon-only layer (in CE-E) showing "cassettes" and different sensor thicknesses

The HGCROC for CMS high granularity calorimeter D. Thienpont XII Front-end Electronics workshop. 12-16 juin 2023 Torino

Development history

• Jan 16: SKIROC2_CMS[TWEPP 2016]

SiGe350 nm 7x9 mm² Dedicated to test beam and analog architecture (TOT)

- May 16: 1sttest vehicle TV1
 CMOS 130 nm 2x1 mm²
 Dedicated to preamplifier studies
- Dec 16: 2ndtest vehicle TV2[TWEPP 2017] CMOS 130 nm 4x2 mm² Dedicated to technical proposal analog channel study
- July 17: HGCROCv1[TWEPP 2018]

CMOS 130 nm 5x7 mm² Wire bonds

All analog and mixed blocks; large part of digital blocks

- Feb 19: HGCROC2 [CHEF 2019, IEEE 2020, TIPP 2021] CMOS 130 nm 15x6 mm² Bump bonds
 - Silicon and SiPMversions (for both 2 and 2A)

Final size, packaging and I/Os

• Dec 20: HGCROC3[TWEPP 2021, IEEE 2021]

CMOS 130 nm 15x6 mm² Bump bonds Silicon and SiPMversions

• June 23: HGCROC3b

CMOS 130 nm 15x6 mm² Pre-production

The HGCROC for CMS high granularity calorimeter XII Front-end Electronics workshop. 12–16 juin 2023 Torino

ASIC design coordinator: Christophe de La Taille Damien Thienpont

High Density (HD) and Low Density (LD) packages

A 72 channels ASIC for charge and time measurements

Measurements

Charge

- ADC (AGH): peak measurement, 10 bits @ 40 MHz, dynamic range defined by preamplifier gain
- TDC (IRFU): **TOT** (Time over Threshold), **12 bits** (LSB = **50ps**)
- ADC: 0.2 fC resolution. TOT: 2.5 fC resolution

•Time

- TDC (IRFU): TOA (Time of Arrival), 10 bits (LSB = 25ps)

Two data flows

DAQ path

- 512 depth DRAM (CERN), circular buffer
- Store the ADC, TOT and TOA data
- 2 DAQ 1.28 Gbps links

•Trigger path

- Sum of 4 (9) channels, linearization, compression over 7 bits
- 4 Trigger 1.28 Gbps links

Control

- Fast commands
 - 320 MHz clock and 320 MHz commands
 - A 40 MHz extracted, 5 implemented fast commands
- I2C protocol for slow control

Ancillary blocks

- Bandgap (CERN)
- 10-bits DAC for reference setting
- 11-bits Calibration DAC for characterization and calibration
- PLL (IRFU)
- Adjustable phase for mixed domain

Gain: 0,025 to 0,375 (step 0,025)

HGCROC for HGCAL has been extensively measured and reaches good performance

HKROC to readout photomultiplier tubes for large neutrino experiments

Hyperk R&D started in September 2020 (OMEGA_LLR-CEA):

Design of a front-end board for the charge and the time measurements ("Digitizer") for the Hyper-Kamiokande experiment:

- Omega developed the ASIC HKROC in TSMC 130 nm node
- 3 solutions in competition (QTC-Japan, Discrete-Italy, HKROC-France)

Based on HGCROC, was developed in 3 months. HKROC is versatile, low-power and fully integrated solution for large neutrino experiments

ASIC requirements:

- Autotriggering detection **1/6 of p.e**. (0.33 pC)
- Charge measurement up to **1250 p.e.** (2500 pC)

with a linearity < 1% and a resolution of 0.2 pC up to 20 pC

- Time measurement at **300 ps** at **1 p.e.** (2 pC)
- Hit rate up to 1 MHz

Omega expertise in ASIC for Cerenkov detectors CATIROC ASIC in JUNO experiment in China

Hyperkamiokande 20,000 20" PMTs

HKROC overview

- HKROC 36 channels asic submitted in August 2021 in TSMC 130 nm technology
- 36 independent channels working in triggerless mode. Input signal amplified and auto-triggered.
- A digital part to manage all the system, the conversion and the read-out
- A waveform digitizer: it is able to reconstruct the full shape of the charge provides a high precision Time of Arrival (ToA)
- Transmits the data by 4 high speed differential links at 1.28 Gbps

ASIC design coordinator: Dulucq Frederic Selma Conforti

> 1 sample of Charge

Readout over

the 1,28G link

Dead time is due to

readout only when

buffer is full !

Extensively measured (by LLR-OMEGA-CEA) and reaches good performances!

GDR DI2I Nantes 10-12/07/2023

6.395e+04 / 91 107.8 ± 14.91

162.3 ± 5.328

 5.001 ± 0.0899

.002e+05/8

408.3 ± 4875

 $\begin{array}{c} 0.9992 \pm 49.43 \\ 0.1 \pm 2.981 \text{e}{-}05 \\ 411.4 \pm 7.514 \\ 50.09 \pm 0.2177 \\ 8.873 \pm 0.1514 \end{array}$

 2.32 ± 0.106

0.8396 ± 0.04433

0.2781 ± 0.04149

Summary

- 15 ASICs for timing detectors, calorimeters and spatial projects under OMEGA responsibility produced and installed on detectors in 15 years
 - Lot of versatility integrated in ASICs to adapt their use for various detectors
 - New ASIC design usually derived from a previous one, design "re-use"
- ALTIROC, HGCROC and HKROC are complex and state of the art ASICs
 - **ALTIROC** : Analog **30%** (derived from Petiroc) and Digital **70%** (Digital on Top)
 - First 225 channels full matrix LGAD readout chip with 1 GHz preamplifier with 4 pF detector capacitance
 - ASIC with a mix of requirements specific to calorimetry and to pixel ASICs for trackers = new territory in HEP
 - Electronics jitter ~25 ps for MIP=10 fC, 4 mW/ch
 - HGCROC: derived from SKIROC chip (CALICE), State of the art performance,
 - Noise < 0.4 fC, ADC and TDC linearity < 1 %, Time walk < 2.5 ns, 15 mW /ch
 - Time resolution ~125 ps for 15 fC (Cdet= 47 pF), floor 13 ps, min TOA thereshold 25 fC
 - o HKROC: derived from HGCROC chip, designed in only 3 months, extensive characterization in 6 months
 - Triggerless, waveform digitizer
 - Time resolution **150 ps** for **1 pe**, Charge measurement up **to 2500 fC**
- Complexity of the latest ROC chips => Design and tests at system level performed in strong collaboration with other labs
- A lot of digital to process data internally ant output them at 1.28 Gbps but Front End and floor plan are crucial ensure the performance with the detector

HGTD time precision

$$\sigma_{hit}^2 = \sigma_{Landau}^2 + \sigma_{clock}^2 + \sigma_{elec}^2$$

$$\sigma_{elec}^2 = \sigma_{time \ walk}^2 + \sigma_{analog \ front-end}^2 + \sigma_{TDC}^2$$

$$\sigma_{analog FE} = \frac{Noise}{dV/dt} = \frac{e_n C_d \sqrt{t_d}}{Q_{in}}$$

- C_d : Sensor capacitance (around 4 pF expected)
- t_d : LGAD drift time (600 ps)

 Q_{in} : MIP collected charge (10 fC at the start of the detector

lifetime, 4 fC at the end and after 200 MRad)

 e_n : Noise spectral density of the input transistor

Criteria		Max.	Conditions
Total hit jitter	initial :	35 ps	at 10 fC
	final :	70 ps	at 4 fC
Landau jitter		25 ps	for un-irradiated LGAD
L Clock jitter		15 ps	
L Electronic jitter		20 ps	
↓ Time walk jitter		10 ps	
↓ Front-end jitter		10 ps	
, TDC jitter		10 ps	

Testbench for ALTIROC2

- Setup = ASIC board (ASIC alone or bump bonded onto sensor) + interface board + FPGA board
- Front-end calibration : charge injection (0 up to 50 fC) using ASIC internal calibration pulser, controlled by the FPGA, synchronous to 40 MHz clock, ASIC alone: Cd=3,5 pF can be set by SC to mimic sensor capacitor

Designed by Pierrick Dinaucourt (OMEGA)

Sensor effect on noise

Digital noise injected on the preamplifier ground gets amplified only when the impedance between the detector capacitance and the non-inverting preamplifier input is not zero : when the sensor is connected !

mega Effect of HV decoupling : where is the AC current flowing back to ground ? Multiple channels 10 nF HV decoupling capacitor adds 50% more noise on a TZ output. ASIC + Sensor in preamp<j> Z_PA I sensor Cdet 1 R_HV L_HV $Rin_pa \sim 1 K$ Z_HV pF $100 \,\mathrm{K}$ 1 nH gnd pa HV $\Lambda\Lambda\Lambda$ EDDI Return sensor I decoupling IF 10nF HV dec cap 10 nI Return sensor I if NO C HV dec cap Z neighbors 224*Cdet (Sensor) Without HV decoupling capacitor ~1 nF Rin_pa/224 ~ 5 Ohms CANANCISTAN gnd pa ASIC + SENSOR With HV capacitor

Bump likely digital coupling inside the asic amplified by the HV capacitor

Optimal HV impedance is very different for 5x5 and 15x15 sensor

HV resistance :

- varied from 0 to 1kOhm
- Effect on gnd_pa noise amplification
 - Goes from 20 to 1
 - ~1 for R>100 Ohm
- Current return ensured by the 224 spectator channels
 - · Was not the case with smaller sensor
- HV parasitic inductance :
 - Effect of 10 nH in HV
 - 1 channel, 25 channels, 225 channels
 - = Altiroc0/Altiroc1/Altiroc2

Altiroc2 doesn't suffer from HV parasitic inductance !

Noise amplified by PA as signal Noise **x20** when $R_{HV} = 0 \Omega$ 1.1 $\lesssim ^{10}$ e ~ 9.0 61.13 6.13 Noise **x1** when $R_{HV} \equiv 1 k\Omega$ 61.52 4.0 G.E 2.0 13.13 -1...19 ບັກການ ປົກໜ 20.0 75.0 channe Pulse Jt_tz 65.0 225 channels 55.0 45.0 35.0 25 channels 9 25.0 15.05.0 -5.0 -15.0 217 f ATLAS HGTD Electronics – JME Caen – 13th June, 2023

mega

- ALTIROC2 : first 225 channels full matrix LGAD readout chip with 1 GHz preamplifier with 4 pF detector capacitance : new territory in HEP !
- Design done by engineers spread in 6 labs
 - Analog 30 % of the chip
 - Analog performance and Floorplan crucial to guarantee analog performance at system level
 - 2.5 FTE: Omega (1.8 FTE), Clermont (0.7 FTE), SLAC (< 0.1 FTE for TDC), SMU (< 0.1 FTE for Phase shifter)
 - Digital 70 % of the chip
 - Clock Domain Crossing, timings, SEE robustness
 - 5 FTE: Clermont (2.2 FTE), Chips (2 FTE), IFAE (0.8 FTE)
 - Assembly done Full Digital on Top + UVM verification

ALTIROC Performances

- Analog performance demonstrated with ALTIROC2 are encouraging !
 - Jitter (ASIC+sensor) ~ 25 ps at 10 fC with calibration pulse (\rightarrow required ~ 20 ps)
 - Vth (ASIC+sensor) can be set at \sim 3 fC (\rightarrow required 4 fC)
 - First assembled module has given similar performances than full ASIC testboard
 - Digital coupling observed
- ALTIROC3 is currently under test with improvements

• ALTIROC ASIC: 225-channel ASIC: Foundry TSMC 130 nm, submission through CERN/IMEC. Delivery of 12-inch wafers,

FAB 12 for rad hardness (120 ASICs/wafer).

 1086 working ASICs required for hybridization and module assembly for pre-production and 21708 working ASICs are required for production. The expected ASIC yield is 80 %

	Working ASICs	Needed ASICs
Pre production HGTD-ALTIROC-A (5%)	1086	1358
Production HGTD-ALTIROC-B	21708	27135

ALTIROC2: Performance of an LGAD readout ASIC for ATLAS HGTD picosecond MIP timing detector Maxime Morenas JINST 18 (2023) C01070 In: Topical Workshop on Electronics for Particle Physics 2022 (TWEPP 2022), Bergen, Norway, 19 - 23 Sep 2022, pp.C01070 DOI 10.1088/1748-0221/18/01/C01070

HGCROC STATUS

HGCROC for HGCAL has been extensively measured and reaches good performance

- < 1% linearity for charge measurement over the full dynamic
- Noise level as expected < 0.4 fC with Cd= 65 pF
- Timing (Time walk and jitter) as expected: TW < 1.4 ns, jitter~ 1.8 ns/Q(fC) and 13 ps floor

HGCROC3 irradiation tolerant

- Still working properly up to ~ 400 Mrad

	CE-E	CE-H	CE-H	Tata
	Silicon	Silicon	Scintillator	Tota
HGCROC	60 3 2 4	31 596	8 4 96	100416
Motherboards	5 004	2 5 5 6	384	7944
Bidirectional data/control links	5 0 0 4	2 5 5 6	384	7944
Trigger links	4 0 2 0	2 5 5 6	768	7344

- 2 robots: LLR and OMEGA
- Pick and placing features work
- DAQ and analysis software work
- ~ 450 HD-ROCv3 have been tested
- ~ 300 LDROCv3 have been tested

Preliminary tests list: Power consumption Write/read fuse number Write/read the 8 bits of the 800 SC registers Measure the 2*64 probe dc values Measure the 10bits DACs and 12 bits calibration Measure the 6 bits channel wise tuning dacs : 78 x 6 bits x 3 dacs Adjust the pedestals, TOA/TOT thresholds channel wise Check the fast commands and links Check rms to detect bad or unconnected channels Make a phase scan to check shifter OK Run the DRAM tests Check ADC linearity with test pulse injection : 10 points* 72 channels * 100 meas. Set threshold to ~10 fC measure TOA and TOT vs Qinj (DAQ and TRIG paths) Specific tests for the SiPM version 2V5 power consumption

- Input DC level adjustment (Input DAC)
 Convoyor dain (DACh adjustment)
- Conveyor gain (DACb adjustment)

HKROC + PMT

The PMT support is covered by a black sheet, and is itself installed into a black-room to minimize the external light contamination. For this measurement, the PMT was illuminated by a 402 nm PILAS laser of 100 ps pulse width with a 500 kHz rate.

Reconstruction method

Calibrate each channel of the digitizer with one charge – build a **reference** waveform

Reconstruction method

