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Abstract. We show that Quarkyonic Matter can mitigate the hyperon puzzle.
The key observation is that the hyperon threshold is shifted to a higher density
by a factor of constituent strange quark mass. We illustrate this effect by using
the ideal dual Quarkyonic (IdylliQ) model with multiple flavors.

1 Introduction

The existence of hyperons in neutron star cores remains as an open question. Hyperons
are expected to appear since it is at some point more likely to add a particle with different
flavor due to Pauli blocking than adding another nucleon. The onset of hyperons leads to
the problematic reduction of the maximum mass of a neutron star, which is at odds with the
presence of heavy pulsars. This problem is known as hyperon puzzle.

Meanwhile, we believe that nuclear matter undergoes deconfinement and eventually turns
into quark matter with increasing baryon density. It is natural to expect so since nucleons in
nuclear matter overlap at a few times the saturation density, so quarks become relevant de-
grees of freedom. The liberation of quarks at high density is led by screening of the confine-
ment potential by quarks in the medium, which is based on the weak-coupling analysis [1].

However, as was pointed out in Ref. [2] based on the large-Nc QCD, the deconfinement at
high density may not be as simple as this conventional picture. Namely, in the large-Nc limit
of QCD, the screening mass for gluons from quark loops is suppressed by the factor 1/Nc.
This should be contrasted to QCD at finite temperatures in which the thermal screening of
the confinement potential is efficient enough to form the deconfined quark-gluon plasma.

Such an observation in large-Nc QCD at high density led to the notion of Quarkyonic
matter [2]: The fundamental degrees of freedom in dense large-Nc QCD matter are confined
baryons because the confinement interaction is never screened from the argument above. At
the same time, matter can be described in terms of quarks in the weakly-coupled regime
because the fundamental degrees of freedom in the weak-coupling calculations are quarks.
This can be interpreted as the duality between baryonic and quark degrees of freedom.

Quarkyonic matter has successfully been applied to reproduce the semi-quantitative fea-
ture of the neutron star equation of state [3]. The key feature of Quarkyonic matter is the
nontrivial occupation number in the phase space. This has been recently derived in Ref. [4]
by using the ideal dual Quarkyonic (IdylliQ) model, which explicitly takes into account the
dual aspect of Quarkyonic matter.

In this contribution, we show that the onset of hyperons in the IdylliQ matter is shifted to
a higher density compared to the conventional picture, so the hyperon puzzle is alleviated.
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2 Ideal dual Quarkyonic (IdylliQ) model
In this section, we briefly sketch the IdylliQ model of the symmetric nuclear matter developed
in [4, 5] and discuss its solution [4].

From the dual nature of Quarkyonic matter, we expect the thermodynamic quantities to
be described simultaneously in terms of baryons and quarks. Here, we specifically consider
the baryon density nB and the energy density ε. We introduce the phase-space density for
baryons fB(k) and quarks fq(q). The quark distribution fq is defined for a fixed color, fq ≡
f R
q = f G

q = f B
q . In such a setup, the baryon distribution is given by

nB = 4
∫

k
fB(k) = 4

∫
q

fq(q) , (1)

where the factor 4 arises from the spin and isospin degeneracy, and
∫

k and
∫

q are the shorthand

notation for the integration over the momentum
∫

d3 k
(2π)3 and

∫ d3 q
(2π)3 , respectively. The energy

density is

εB[ fB] = 4
∫

k
EB(k) fB(k) , εq[ fq] = 4

∫
q

Eq(q)[Nc fq(q)] , (2)

where we fixed the dispersion relation for a baryon as EB(k) =
√

M2
N + k2 and MN is the

nucleon mass. Duality means ε = εB[ fB] = εq[ fq]. Each description is related through the
following relation, which effectively takes into account the quark confinement inside baryons:

fq(q) =
∫

k
φ

(
q −

k
Nc

)
fB(k) . (3)

The function φ describes a momentum distribution of a single quark in a single baryon state,
so the physical requirement for φ is to have a peak at q − k/Nc = 0 with the finite width to
account for the quark confinement effect. Here, for φ, we choose

φ(q) =
2π2

Λ3

e−q/Λ

q/Λ
, (4)

where the parameter Λ is an effective confinement scale. This specific choice (4) was made
so that the model becomes analytically soluble while fulfilling the physical requirement.

Now, we find the optimal solutions of fB and fq by minimizing the ε at a given nB and
fulfilling the constraints 0 ≤ fB ≤ 1 and 0 ≤ fq ≤ 1. The minimum energy solution is fB(k) =
Θ(kF − k) as in the ordinary Fermi gas model when the corresponding quark distribution
obtained through (3) is less than the unity. When fq(q) ≥ 1, the Fermi-Dirac distribution
fB(k) = Θ(kF − k) has to be modified. We find the minimum energy solution [4]

fB(k) =
1

N3
c
Θ(kbu − k) + Θ(ksh − k)Θ(k − kbu) , (5)

where kbu and ksh refer to the edges of the bulk and the shell part, respectively. The corre-
sponding quark distribution is

fq(q) = Θ(qbu − q) + f fB=1
q (q)Θ(qsh − q)Θ(q − qbu) + f fB=0

q (q)Θ(q − qsh) , (6)

where qbu = kbu/Nc and qsh = ksh/Nc. Also, f fB=1
q (q) = N3

c + d+ eq/Λ

q/Λ + d− e−q/Λ

q/Λ and f fB=0
q (q) =

c− e−q/Λ

q/Λ . The coefficients c− and d± are determined by the matching conditions at q = qbu and
qsh. One can find the relation between qbu and qsh from the minimum energy condition:

Λ + qbu

Λ + qbu − (Λ + qsh)e−(qsh−qbu)/Λ = N3
c . (7)



3 Hyperons in IdylliQ model

To address the hyperon puzzle, we consider including a hyperon on top of the pure neutron
matter. For simplicity, we neglect the lepton contributions and limit ourselves to the charge-
neutral hadron species. Now we extend the above model to the multi-flavor case [6]. In
the above, we consider the symmetric nuclear matter, and the baryons are described by a
single distribution fB. Here, we consider the momentum distributions for neutrons fn and for
the strangeness −1 hyperons fY . To be more specific, we consider Λ0 and Σ0 hyperons and
neglect their mass differences. The number density and energy density are modified as

nn = 2
∫

k
fn(k) , nY = 4

∫
k

fY (k) , (8)

εB[ fn, fY ] = 2
∫

k

[
EN(k) fn(k) + 2EY (k) fY (k)

]
, (9)

where the dispersion relations for neutrons and hyperons are EN(k) =
√

k2 + M2
N and EY (k) =√

k2 + M2
Y , respectively. The baryon density is given by nB = nn+nY . In the flavor asymmetric

case, the relation (3) is modified as

fd(q) =
∫

k
φ

(
q −

k
Nc

) [
2
3

fn(k) +
2
3

fY (k)
]
, (10)

where the factor in front of fn originates from the baryon number content 2/3 in a neutron,
and the factor in front of fY from the baryon number content 1/3 in a hyperon times the mass
degeneracy 2 for Λ0 and Σ0. One can write down the similar relation for u and s quarks.

As we will see below, since the system is d-quark abundant, only the d-quark distribution
is saturated. Thus, the d-quark distribution is given by Eq. (6), and from the relation (10), the
distribution at k < kbu must fulfill the condition:

2
3

fn(k) +
2
3

fY (k) =
1

N3
c
. (11)

From this condition, we find that the optimal distributions for neutrons and hyperons:

fn(k) =
3

2N3
c
Θ(k − kY )Θ(kbu − k) + Θ(k − kbu)Θ(ksh − k) , (12)

fY (k) =
3

2N3
c
Θ(kY − k)Θ(k) . (13)

In Fig. 1, we plot fn and fY , and the corresponding quark distributions, fd, fu, and fs.
Now, from the relations above, we can compute the onset density of hyperons. This can

be computed from the β-equilibrium condition, i.e., the chemical potential for neutrons µn and
hyperons µY should be the same. They can be computed from the thermodynamic relations
µn = (∂ε/∂nn)nY and µY = (∂ε/∂nY )nn . We find that the onset of hyperons is at [6]

µB = 2MY − MN , (14)

where µB is the baryon chemical potential and is equal to µn. The hyperon onset in the
non-interacting baryon gas is at µB = MY . Our estimate is shifted to much higher µB by
MY − MN ≃ 0.18 GeV.
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Figure 1. Phase-space density in the IdylliQ model. Left: The momentum distributions for neutrons
(top) and hyperons (bottom). Right: The momentum distributions for d (top), u (middle), and s quarks.

4 Conclusions

We presented that the S = −1 hyperon threshold is shifted from µB = MY to higher density
2MY −MN because of the Pauli exclusion effect of the quark substructure of hyperons. Since
d-quark states are already filled by nucleons, hyperons that contains d quarks are less likely to
appear. This makes the hyperon contribution to a neutron star less important and thus works
toward the resolution of the hyperon puzzle; the shifted threshold is high enough so that it
may not greatly affect the maximum mass of neutron stars. The S = −2 hyperon such as Ξ0

can contribute at µB slightly above the S = −1 hyperon threshold; we could not mention it
due to the limitation of the space. See Ref. [6] for further discussions.
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