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Abstract. We present a Bayesian analysis, based on holography and con-
strained by lattice QCD simulations, which leads to a prediction for the ex-
istence and location of the QCD critical point. We employ two different
parametrizations of the functions that characterize the breaking of conformal
invariance and the baryonic charge in the Einstein-Maxwell-dilaton holographic
model. They lead to predictions for the critical point that overlap at one sigma.
While some samples of the prior distribution do not predict a critical point, or
produce critical points that cover large regions of the phase diagram, all poste-
rior samples present a critical point at chemical potentials µBc ∼550-630 MeV.

1 Introduction
Mapping out the QCD phase diagram is an open challenge in nuclear physics, which is the
main program component of experiments such as STAR at the Relativistic Heavy-Ion Collider
(RHIC) and CBM at FAIR [1]. In particular, while the phase transition between hadrons and
quarks is a smooth crossover at low densities [2], several models predict the existence of a
second-order critical point (CP), beyond which the transition becomes first order (for recent
reviews see e.g.[3, 4]). In our analysis, we use a holographic approach [5] to extrapolate
lattice QCD information from zero to large baryon chemical potential µB. This model is a
natural good candidate, since it can reproduce lattice QCD results at low densities, where they
are available [6, 7], and naturally leads to the almost ideal-fluid behavior of the Quark-Gluon
Plasma [8], as observed in experiments. We use a Bayesian analysis, and two functional forms
for the potential and coupling functions that are the main unknown in our model, to perform a
systematic scan of the parameters, constrained by lattice QCD results at zero density [9, 10],
with a probability given by the respective error bars. Our predictions for the QCD critical
point, based on the posterior parameter distributions, agree within one sigma for the two
model realizations, and collapse to a very small region of the phase diagram, which is within
the phase transition band from lattice QCD simulations [11].
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2 Einstein-Maxwell-Dilaton holographic model

The gauge/gravity duality provides a way to describe the physics of a thermal, strongly cou-
pled field theory in 3+1 Minkowski space time in terms of dual black holes in a 4+1 dimen-
sional asymptotically anti-de Sitter bulk spacetime.

We employ the following action, in which a Maxwell field Aµ is used to provide a de-
scription of a conserved charge in QCD, in our case baryon number, while a dilaton scalar
field ϕ breaks conformal invariance. The action of our theory is given by

S =
1
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where g is the determinant of the metric, R is the Ricci scalar, Fµν = ∂µAν − ∂νAµ is the
Maxwell field strength, while V(ϕ) and f (ϕ) are functions tweaked to reproduce QCD physics
at µB = 0. The numerical solutions for the EMD fields in thermal equilibrium, generated by
solving the bulk equations of motion for different pairs of initial conditions, are associated
through the holographic dictionary with definite thermal states at the boundary QFT, corre-
sponding to given values of temperature T and chemical potential µB. These functions are
the central unknowns in our analysis, and we choose for them two ansätze as follows:

1. Polynomial-Hyperbolic Ansatz (PHA), a more common parametrization, similar to the
one chosen in Ref. [6]
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2. Parametric Ansatz (PA), a parametrization where it is more straightforward to relate
the parameters directly to plateaus and exponential slopes in the potential [11]

V(ϕ) = −12 cosh
γ1 ∆ϕ

2
V + γ2 ϕ

2

∆ϕ2
V + ϕ

2

 ϕ ,
f (ϕ) = 1 − (1 − A1)

[
1
2
+

1
2

tanh
(
ϕ − ϕ1

δϕ1

)]
+ −A1

[
1
2
+

1
2

tanh
(
ϕ − ϕ2

δϕ2

)]
.(3)

3 Bayesian analysis and results

We will scan the parameter space for the two ansätze described above, in order to generate
an ensemble of models distributed according to the error bars on lattice QCD results. We use
Bayes theorem to find the posterior distributions for the model parameters, θ⃗, given the lattice
QCD constraints d⃗ as follows

P(θ⃗|d⃗) =
P(d⃗|⃗θ)P(θ⃗)

P(d⃗)
(4)

where P(θ⃗) is the prior probability distribution for the model parameters, and we treat P(d⃗),
known as the evidence, as a normalization factor for the posterior.

To locate the critical point, we look at lines of constant ϕ0 while increasing Φ1, where ϕ0
and Φ1 are the values of the dilaton and U(1) electric fields at the event horizon of a black
hole solution, which correspond to the two initial conditions needed to numerically solve the



Figure 1. Results for sample equations of state from the prior (gray) and posterior (blue) distributions,
for the PHA (top) and PA (bottom) Ansätze. Left: normalized entropy density vs temperature. Center:
normalized baryon susceptibility vs temperature. Right: Predictions for the QCD critical point for the
prior (grey stars) and posterior samples (blue histogram and contours). In the left and center panels,
the red points with error bars are the lattice results from Refs. [9, 10]. In the rightmost panels, the blue
lines visible in the inset represent 68% and 95% confidence levels for the posterior distribution.

bulk field equations. These lines are parallel at µB = 0, but they cross at the CP and lead to a
three-solution region beyond it.

The gray lines in the leftmost and middle panels of Fig. 1 display the prior equations
of state, resulting from the functions f (ϕ) and V(ϕ) utilized in our analysis. The rightmost
panels show the spatial distribution of critical points in the (T, µB) plane corresponding to
these samples of the priors. The top and bottom panels correspond to the PHA and PA models,
respectively. While ∼ 20% of the prior sample does not produce a critical point at all for the
PA model, critical points found in this sample are scattered over a very wide region in the
phase diagram. On the other hand, the prior for the PHA version of the model comparatively
produces critical points that are concentrated mainly in one region of the phase diagram.
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Figure 2. Predictions for the critical point location on the (T, µB)-plane, based on the posterior distri-
butions for the PHA model (red) and the PA model (blue). Also shown is the extrapolation of the lattice
QCD transition line from Ref. [12] (green band), based on the peak of the chiral susceptibility. Lines
around confidence regions for the critical point location represent 68% and 95% confidence levels.



Figure 2 shows that the predicted distributions for the critical point location from our
Bayesian analysis for the PHA (red) and PA (blue) Ansätze, are located within a narrow re-
gion in T and µB. Moreover, the regions for the PA and PHA Ansätze agree, with overlapping
68% confidence regions. For a posterior distribution of the parameter values see Ref. [11].

4 Conclusions
We have presented results for the first Bayesian analysis of the phase diagram of QCD con-
strained by first-principles lattice QCD results at zero baryon density. The posterior distribu-
tion of CP locations was computed for two different parametrizations of a holographic EMD
model. We find that imposing agreement with lattice QCD tightly constrains predictions for
the QCD CP location, which were spread all around the phase diagram in the unconstrained
prior. Moreover, bands for the CP location within each model overlap within one sigma,
indicating the robustness of our results against parametrization choices.
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