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Abstract. We developed a deep learning feed-forward network for estimating
elliptic flow (v2) coefficients in heavy-ion collisions from RHIC to LHC ener-
gies. The success of our model is mainly the estimation of v2 from final state
particle kinematic information and learning the centrality and the transverse mo-
mentum (pT) dependence of v2 in wide pT regime. The deep learning model is
trained with AMPT-generated Pb-Pb collisions at

√
sNN = 5.02 TeV minimum

bias events. We present v2 estimates for π±, K±, and p + p̄ in heavy-ion colli-
sions at various LHC energies. These results are compared with the available
experimental data wherever possible.

1 Introduction

Ultrarelativistic heavy-ion collisions have been studied extensively for decades in experi-
ments at the Relativistic Heavy Ion Collider (RHIC BNL) and at the Large Hadron Collider
(LHC CERN). In these collisions, a deconfined thermalized medium of quarks and gluons
can be formed [1]. This medium of hot and dense state of the strongly interacting matter
is called the quark-gluon plasma (QGP). Only signatures of the formation of QGP could be
studied using various indirect effects such as jet quenching, strangeness enhancement, and
quarkonia suppression since no direct observation is possible due to the short lifetime of the
strongly interacting matter.

Transverse collective flow is another key observable, which is widely studied to inves-
tigate the properties of QGP in heavy-ion collisions [2]. This observable depends on the
equation of state and transport coefficients of the system. Anisotropic flow signifies the for-
mation of QGP medium in noncentral relativistic heavy-ion collisions. The pressure gradient
formed in the hot and dense medium due to the initial spatial anisotropy can transform into
final state momentum space azimuthal anisotropy. This momentum anisotropy could be ex-
pressed as the coefficients of the Fourier expansion of the azimuthal momentum distribution
of the produced particles. The second-order flow coefficient is the so-called elliptic flow (v2).
Finite azimuthal anisotropy has been well observed in heavy-ion collision experiments so far
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at RHIC and LHC energies up to higher-order cumulants with various analysis methods [3–
6]. Here, we present our deep learning feed-forward network for estimating elliptic flow (v2)
coefficients, which we compare to heavy-ion collision data from RHIC to LHC energies.

2 The Model and the DNN architecture

Anisotropic flow can be measured and quantified by the coefficients of Fourier expansion of
the azimuthal momentum distribution, given by [7]:

dN
dϕ
=

1
2π

1 + 2
∞∑

n=1

vn cos
[
n(ϕ − ψn)

] with vn = ⟨cos[n(ϕ − ψn)]⟩ , (1)

where, vn denotes nth order anisotropic flow coefficient, ϕ is the azimuthal angle, and ψn is
the corresponding harmonic symmetry plane angle. In order to calculate the elliptic flow
event-by-event, we have used the event plane method [8], and for simplicity, we have fixed
the reaction plane angle, ψR = 0, which results in v2 = ⟨cos(2ϕ)⟩.

A deep learning-based machine learning algorithm was developed to estimate the elliptic
flow event-by-event. For training the deep neural network (DNN), we have used a mul-
tiphase transport (AMPT) model to simulate the dataset. AMPT is a Monte Carlo-based
event simulator that is used to generate ultrarelativistic nucleus-nucleus collisions at RHIC
and LHC energies [9]. AMPT has four components, namely, initialization of collisions by
HIJING [10], parton transport by Zhang’s Parton Cascade model [11], hadronization of the
partons performed by spatial coalescence mechanism in string melting mode and Lund string
fragmentation model in the default version of AMPT [12, 13], and finally, the hadron trans-
port using a relativistic transport model [14, 15]. The DNN was trained with Pb-Pb collisions
at
√

sNN = 5.02 TeV minimum bias events with all charged particles having pT > 0.15 GeV/c
in pseudorapidity, |η| < 0.8.
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Figure 1. The structure of the DNN architecture used for the v2 estimation. The number of nodes and
the type of activation function used in each layer are denoted.

For this regression problem, the DNN consists of one input layer, four hidden layers,
and one output layer, as depicted in Fig. 1. The inputs are given as "pictures" with pixels
of normalized transverse momenta, mass and energy values on the pseudorapidity-azimuthal
plane. This input with 3072 features are mapped to the first dense layer with 128 nodes,
which is connected to the output layer via three hidden layers in succession, each having 256
nodes. The dense layers use the rectified linear unit as the activation function, and the output
layer has a single node with a linear activation function. The DNN model uses the adam
optimizer with mean squared error loss function. Details can be found in Refs. [16, 17].

3 Comparing DNN predictions to AMPT and to experimental data

The elliptic flow, v2(pT) for identified hadrons: π±, K±, and p+p̄ in nucleus-nucleus collisions
at
√

sNN = 2.76 TeV (Pb-Pb), 5.02 TeV (Pb-Pb), and 5.44 TeV (Xe-Xe) is plotted in Fig. 2
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Figure 2. Centrality dependence of v2(pT) for π±, K±, and p + p̄, and all charged hadrons (h±). The
values from AMPT and the predictions from DNN are shown in comparison with ALICE data [18–20].

from top to bottom, respectively. To be comparable with ALICE data [18–20], the AMPT and
DNN were simulated with tracks with pT > 0.5 GeV/c and in midrapidity, |y| < 0.5. Three
selected collision centrality ranges were used for the plots: 0-10%, 40-50% and 60-70%.

One can see from the results, that all particle species behave similarly: the magnitude of
v2(pT) increases with increasing pT until it reaches a maximum value around pT ≈ 2.0 GeV/c,
and then it starts to decrease beyond this point. The values of v2(pT) from AMPT obtained
in this region (i.e. pT ≲ 2.0−3.0 GeV/c) is comparable in magnitude with ALICE results for
the individual particle cases. However, beyond this pT value, AMPT fails to describe the data
as v2(pT) falls faster with increasing pT since fragmentation takes over from coalescence at
high pT.

DNN predictions agree with AMPT values quite nicely up to pT ≲ 4.0−6.0 GeV/c. Be-
yond this pT, the values from DNN start to differ from the AMPT calculated data points. The
reason behind that is the statistics, which decreases for the higher pT ≳ 6.0 GeV/c regions.
The limited number of event provided less instances to the DNN model during the training
process. For this reason, the mismatch between DNN and AMPT comes into the picture
beyond pT ≳ 6.0 GeV/c.

4 Discussion and Summary

In Refs. [16, 17], we demonstrated the applicability of a DNN-based machine learning model
to evaluate the second-order anisotropic flow coefficient (v2) event-by-event for identified



hadrons from final state particle kinematic information in heavy-ion collisions. The devel-
oped DNN model can well estimate v2 for light-flavor identified particles such as π±, K±,
and p + p̄ in heavy-ion collisions at RHIC and LHC energies. Here, we compared the re-
sults to the data. The DNN was trained with AMPT data of minimum bias Pb-Pb collisions
at
√

sNN = 5.02 TeV and was able to learn and predict the centrality, hadron flavor, energy
and transverse momentum dependence of elliptic flow for other collision systems at various
energies. Results were presented for Pb-Pb collisions at

√
sNN = 2.76 TeV, Xe-Xe collisions

at
√

sNN = 5.44 TeV in three centrality bins. We have seen DNN estimator and the AMPT
data correlate well up to pT ≲ 3 GeV/c, where the training statistics issue vanishes. Compar-
ison with available ALICE dataset [18–20] at LHC energies follows the trends of the AMPT
with a high accuracy, which latter underestimates the data above pT ≈ 2 GeV/c, similarly as
the DNN model. The obtained results suggest, that original data or Monte Carlo simulations
with better agreement with data at high pT, can train the DNN-estimator for more accurate
predictions.
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