Precision Measurement of Net-proton Number Fluctuations in Au+Au Collisions at RHIC

University of Science and Technology of China

Introduction $\langle \rangle$

Results from BES-II

Summary and outlook

The 21st International Conference on Strangeness in Quark Matter 3-7 June 2024, Strasbourg, France

00

Yifei Zhang (for the STAR Collaboration)

00

- Outline
- Experimental analysis

SQM, June 6, 2024

Introduction: QCD Phase Diagram

Key features of phase structure:

- **QGP** and hadronic phase
- Crossover at small μ_B $(\frac{\mu_B}{\tau} < 2)$ compatible to all experimental observations.
- Transition temperature ($T_C \sim 156 \text{ MeV}$) Lattice QCD and verified by exp. chemical freeze-out.
- 1st order phase transition at large μ_B and critical end point (CEP) are conjectured.

2

Introduction: QCD Phase Diagram

A. Pandav, D. Mallick, B. Mohanty, PPNP. 125, 103960 (2022)

Experimentally searching and locating CEP is crucial.

Key features of phase structure:

- QGP and hadronic phase
 - Crossover at small μ_B $(\frac{\mu_B}{\tau} < 2)$ compatible to all experimental observations.
- Transition temperature ($T_C \sim 156 \text{ MeV}$) Lattice QCD and verified by exp. chemical freeze-out.
- 1400
- 1st order phase transition at large μ_B and critical end point (CEP) are conjectured.

Sign problem in Lattice QCD at finite μ_B

Large uncertainties from models to locate the CEP.

3

correlation length: ξ expected to diverge susceptibilities: χ_n^q

Introduction: Observables

Allow the signal measurable

♦ Finite size/time effects reduces ξ Higher order \longrightarrow more sensitivity

$$C_{2} \sim \xi^{2}, C_{4} \sim \xi^{7}$$
$$\frac{C_{4q}}{C_{2q}} = \frac{\chi_{4}^{q}}{\chi_{2}^{q}}, \frac{C_{6q}}{C_{2q}} = \frac{\chi_{6}^{q}}{\chi_{2}^{q}}$$

 Direct comparison with lattice QCD, HRG, QCD-based model calculations

R.V. Gavai and S. Gupta, PLB696, 459(11) S. Ejiri, F. Karsch, K. Redlich, PLB633, 275(06) A. Bazavov et al., PRL109, 192302(12) S. Borsanyi et al., PRL**111**, 062005(13)

Strasbourg, June 4, 2024

At CEP:

q = B, Q, S

M. A. Stephanov, PRL 107 (2011) 052301

Assumption: Thermodynamic equilibrium

Non-monotonic energy dependence of C_4/C_2 of conserved quantity **existence of a critical region**

Introduction: Observables

Allow the signal measurable

 \Diamond Finite size/time effects reduces ξ Higher order \longrightarrow more sensitivity

$$\frac{C_{2q}}{C_{2q}} = \frac{\chi_4^q}{\chi_2^q}, \frac{C_{6q}}{C_{2q}} = \frac{\chi_4^q}{\chi_2^q}$$

 $C_{2} \sim \xi^{2} C_{1} \sim \xi^{7}$

Direct comparison with lattice QCD, HRG, QCD-based model calculations

R.V. Gavai and S. Gupta, PLB696, 459(11) S. Ejiri, F. Karsch, K. Redlich, PLB633, 275(06) A. Bazavov et al., PRL109, 192302(12) *S. Borsanyi et al., PRL***111**, 062005(13)

Strasbourg, June 4, 2024

expected to diverge Cumulants n = E-by-E net-proton multiplicity $C_1 = \langle n \rangle$ $C_2 = <\delta n^2 > * \delta n = n - < n >$ $C_3 = \langle \delta n^3 \rangle$ $C_4 = <\delta n^4 > -3 < \delta n^2 >$ $C_5 = \langle \delta n^5 \rangle - 10 \langle \delta n^3 \rangle \langle \delta n^2 \rangle$ $C_6 = <\delta n^6 > -15 < \delta n^4 > <\delta n^2 > -10 < \delta n^3 >^2 + 30 < \delta n^2 >^3$ Skewness: Asymmetry $\frac{\chi_6^q}{\chi_2^q}$ $\mathbf{S} = \langle (\delta N)^3 \rangle / \sigma^3 = C_3 / C_2^{3/2}$ q = B, Q, SNegative Skew Positive Skew Positive Kurtosis Kurtosis: Peakedness Leptokurtic Negative Kurtosi $\kappa = \langle (\delta N)^4 \rangle / \sigma^4 - 3 = C_4 / C_2^2$ Platykurti Mesokurtic

Introduction: Observables

Allow the signal measurable

♦ Finite size/time effects reduces ξ Higher order \implies more sensitivity

$$\frac{C_{2q}}{C_{2q}} = \frac{\chi_4^q}{\chi_2^q}, \frac{C_{6q}}{C_{2q}} = \frac{\chi_6^q}{\chi_2^q}$$

 Direct comparison with lattice QCD, HRG, QCD-based model calculations

R.V. Gavai and S. Gupta, PLB696, 459(11) S. Ejiri, F. Karsch, K. Redlich, PLB633, 275(06) A. Bazavov et al., PRL109, 192302(12) S. Borsanyi et al., PRL**111**, 062005(13)

Strasbourg, June 4, 2024

expected to diverge $C_{1} = \langle n \rangle$ $C_{2} = \langle \delta n^{2} \rangle \quad *_{\delta n = n - \langle n \rangle}$ $C_{3} = \langle \delta n^{3} \rangle$ $C_{4} = \langle \delta n^{4} \rangle - 3 \langle \delta n^{2} \rangle$ $C_{5} = \langle \delta n^{5} \rangle - 10 \langle \delta n^{3} \rangle \langle \delta n^{2} \rangle$ $C_{6} = \langle \delta n^{6} \rangle - 15 \langle \delta n^{4} \rangle \langle \delta n^{2} \rangle - 10 \langle \delta n^{3} \rangle^{2} + 30 \langle \delta n^{2} \rangle^{3}$

q = B, Q, S

Factorial cumulants

$$\kappa_1 = C_1$$
 $n = E-by-E (anti)proton multiple
 $\kappa_2 = -C_1 + C_2$
 $\kappa_3 = 2C_1 - 3C_2 + C_3$
 $\kappa_4 = -6C_1 + 11C_2 - 6C_3 + C_4$
 $\kappa_5 = 24C_1 - 50C_2 + 35C_3 - 10C_4 + C_5$
 $\kappa_6 = -120C_1 + 274C_2 - 225C_3 + 85C_4 - 15C_5 + C_6$$

Experimental Search for CEP from BES-I

Strasbourg, June 4, 2024

 $3 \leq \sqrt{s_{NN}}$ (GeV) $\leq 200 \rightarrow 750 \geq \mu_B$ (MeV) ≥ 25

High precision, widest μ_R coverage to date

 $3 \leq \sqrt{s_{NN}}$ (GeV) $\leq 200 \rightarrow 750 \geq \mu_B$ (MeV) ≥ 25

High precision, widest μ_B coverage to date

 $3 \leq \sqrt{s_{NN}}$ (GeV) $\leq 200 \rightarrow 750 \geq \mu_B$ (MeV) ≥ 25

Events used for net-proton fluctuation studies (Collider runs) BES-II vs BES-I

μ	E
-	_

√s _{NN} (GeV)	Events BES-I (10 ⁶)	Events BES-II (10 ⁶)
7.7	3	45
9.2	_	78
11.5	7	110
14.5	20	178
17.3	_	116
19.6	15	270
27	30	220

~x10-18 larger statistics 9.2 and 17.3 GeV added to energy scan

High precision, widest μ_B coverage to date

STAR DETECTOR: BES-II UPGRADE

Wide and uniform acceptance

Excellent PID and tracking

Modest rates

inner Time Projection Chamber

endcap Time-Of-Flight

Event Plane Detector

STAR Major Upgrades for BES-II

iTPC:

- \blacktriangleright Improves dE/dx
- \triangleright Extends η coverage from 1.0 to 1.6
- \triangleright Lowers p_T cut-in from 125 to 60 MeV/c
- \triangleright Ready in 2019

Enlarge rapidity acceptance: $|\eta| \le 1.0 \rightarrow |\eta| \le 1.6$

- Improve particle identification: $p_T \ge 125$ MeV/c $\rightarrow p_T \ge 60$ MeV/c 2)
- Enhance centrality/event plane resolution, suppress auto correlations 3)
- Enable the fixed-target program: $\mu_B \leq 420 \text{ MeV} \rightarrow \mu_B \leq 750 \text{ MeV}$ 4)

eTOF:

Full EPD has been installed

Forward rapidity coverage \triangleright PID at $\eta = (1.05 \text{ to } 1.5)$ Borrowed from CBM-FAIR \triangleright Ready in 2019

EPD:

- > Improves trigger
- ➤ Better centrality & event plane measurements
- \triangleright Ready in 2018

Optimized Using Charged particle multiplicity measured by STAR Exclude protons and antiprotons to avoid self correlation

Centrality Definition

Two centrality definitions with different acceptance:

Refmult3		Refmult3
Charged particle multiplicity excluding protor		
BES-I	BES-II	BES-II
w/o iTPC	w/ iTPC	w/ iTPC
$ \eta < 1.0$	$ \eta < 1.0$	$ \eta < 1.6$

Refmult3X (BES-II) > Refmult3 (BES-II) > Refmult3 (BES-I)

Best centrality resolution

Proton Identification

p _T (GeV/c)	0.4 - 0.8	0.8 – 2.
rapidity	y < 0.5	
detector	TPC	TPC+TC
dE/dx	$ n\sigma < 2$	
mass ² (GeV ² /c ⁴)	/	0.6 – 1.2

- Uniform acceptance for (anti-) protons \diamond |y| < 0.5 with |Vz| < 50 cm
- (anti-)protons identified using TPC dE/dx + TOF
- Bin-by-bin purity > 99% in the full acceptance range and all energies

Event-by-Event Net-proton Number Distribution

- Raw net-proton number distributions from BES-II: Uncorrected for detector efficiency
- Mean increases with decreasing collision energy: Effect of baryon stopping

Improved statistics and systematics

Better statistics:

~x10 – 18 larger statistics compared with BES

Larger acceptance and improved tracking Benefit from iTPC upgrade ~10% higher proton efficiency compared to BES-I Better control on uncertainty on efficiency: 2% compared to 5% in BES-I

Better centrality resolution Corrected for finite centrality bin with event-number-weighted average

 $|C_n = \sum_r w_r C_{n,r}|$ where $w_r = n_r / \sum_r n_r$, n = 1, 2, 3, 4...Here, n_r is no. of events in r^{th} multiplicity bin

X. Luo, T Nonaka, PRC 99 (2019), X. Luo et al, J.Phys. G 40, 105104 (2013)

5-I Stat.error
$$C_r \propto \frac{\sigma^r}{\sqrt{N}}$$

STAR, PRC 104 (2021) 024902

Reduction factor in uncertainties on 0-5% C_4/C_2 : **BES-II vs BES-I**

7.7 (GeV	19.6	GeV
stat. error	sys. error	stat. error	sys. error
4.7	3.2	4.5	4

Latest Net-proton Fluctuation Results from STAR BES-II

0

Cumulants vs Centrality and Collision Energies

Cumulant ratios vs Centrality and Collision Energies

Precision measurements: smooth variation across centrality and collision energy observed. Results from Refmult3X (BES-II) < Refmult3 (BES-II) < Refmult3 (BES-I)

 \Leftrightarrow For 0-5% C_4/C_2 , weak effect of centrality resolution seen.

Average Number of Participant Nucleons (N_{part})

A Higher centrality resolution leads to lower ratios (especially in mid central and peripheral collisions):

Energy Dependence of C₄/C₂: Comparison with BES-I

Energy Dependence of C_4/C_2 : Comparison with BES-I

TØ

Second Second

Deviation between BES-II and BES-I data

$\sqrt{s_{NN}}$ (GeV)	0-5%	70-80%
7.7	1.0σ	0.9σ
11.5	0.4σ	1.3σ
14.6	2.2σ	2.5σ
19.6	0.7σ	0.0σ
27	1.4σ	0.2σ

Effect of Centrality Resolution on C_4/C_2

Effect of Centrality Resolution on C_4/C_2

Cumulant Ratio C₄/C₂

0-5% centrality C_4/C_2 results show good agreement between Refmult3 and Refmult3X: weak effect of centrality resolution.

♦ Difference in 70–80% due to centrality resolution impact.

BES-II results shown hereafter are with Refmult3X

Net-proton cumulant ratios

Strasbourg, June 4, 2024

Cumulant Ratios

Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing energy.

Net-proton cumulant ratios

Strasbourg, June 4, 2024

Cumulant Ratios

Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing energy.

Non-CP models used for comparison: A. Hydro: Hydrodynamical model

V. Vovchenko et al, PRC 105, 014904 (2022)

Net-proton cumulant ratios

Cumulant Ratios

Strasbourg, June 4, 2024

Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing energy.

Non-CP models used for comparison: A. Hydro: Hydrodynamical model

V. Vovchenko et al, PRC 105, 014904 (2022)

B. HRG CE: Thermal model with canonical treatment of baryon charge P. B Munzinger et al, NPA 1008, 122141 (2021)

Net-proton cumulant ratios

Cumulant Ratios

Strasbourg, June 4, 2024

Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing energy.

Non-CP models used for comparison: A. Hydro: Hydrodynamical model

V. Vovchenko et al, PRC 105, 014904 (2022)

B. HRG CE: Thermal model with canonical treatment of baryon charge *P. B Munzinger et al, NPA 1008, 122141 (2021)*

C. UrQMD: Hadronic transport model

Bass S., et al. Prog. Part. Nucl. Phys., 41, 255 (1998)

(All models include baryon number conservation)

Strasbourg, June 4, 2024

100

200

(V)

STAR

- Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing energy.
- Non-CP models used for comparison: A. Hydro: Hydrodynamical model
 - V. Vovchenko et al, PRC 105, 014904 (2022)
 - B. HRG CE: Thermal model with canonical treatment of baryon charge P. B Munzinger et al, NPA 1008, 122141 (2021)
 - C. UrQMD: Hadronic transport model
 - Bass S., et al. Prog. Part. Nucl. Phys., 41, 255 (1998)
 - (All models include baryon number conservation)
- Proton factorial cumulant ratios deviates from Poisson baseline at 0.
 - Antiproton κ_3/κ_1 , κ_4/κ_1 closer to 0.

Strasbourg, June 4, 2024

Cumulant Ratios

Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing energy.

Non-CP models used for comparison: A. Hydro: Hydrodynamical model

V. Vovchenko et al, PRC 105, 014904 (2022)

B. HRG CE: Thermal model with canonical treatment of baryon charge P. B Munzinger et al, NPA 1008, 122141 (2021)

C. UrQMD: Hadronic transport model

Bass S., et al. Prog. Part. Nucl. Phys., 41, 255 (1998)

(All models include baryon number conservation)

Proton factorial cumulant ratios deviates from Poisson baseline at 0. Antiproton κ_3/κ_1 , κ_4/κ_1 closer to 0.

Saryon number conservation may shift the non-CEP model baseline but won 't create criticality.

C₄/C₂: Quantifying Deviation from Non-CP Models

Yifei Zhang (USTC) / SQM

22

C₄/C₂: Quantifying Deviation from Non-CP Models

22

Summary:

Precision measurement of net-proton number fluctuations vs . centrality and collision energy in Au+Au collisions from STAR BES-II reported. Compared to BES-I, we have better statistical precision, better centrality resolution, better control on systematics!

of $3.2 - 4.7\sigma$.

Outlook:

- Extend measurements to even higher orders of fluctuations: C_n , κ_n (n = 1 6).
- Examine transverse momentum dependence and rapidity dependence of fluctuations.
- Complete the measurements in Au+Au collisions at fixed target (FXT) energies.

 \diamond Net-proton C_4/C_2 in 0-5% central collisions show a maximum deviation w.r.t. various non-CP model calculations and 70-80% data is observed at $\sqrt{S_{NN}} = 20$ GeV with a significance level

Acknowledgements

SQM2024 Organizers for giving this opportunity.

RHIC operation for successfully completing collection of BES-II data,

 ∞

Thank you for your attention !