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Introduction

The transverse momentum spectra of identified particles measured by the ALICE Collaboration [1] show an interesting feature, namely low-p, pion spectra show en-
hancement with respect to the predictions of various models. We apply the Zubarev approach of the non-equilibrium statistical operator [2] to develop a thermal particle
generator that can account for the enhancement of soft pions by introducing an effective pion chemical potential. This is an alternative to the explanation of the low-p;
enhancement by resonance decays. Bayesian inference methods are used to find the most probable sets of thermodynamic parameters at the freeze-out hypersurface.

/ubarev Approach: Non-equilibrium Pion Distribution Bayesian Inference

The non-equilibrium state of the system is characterized by relevant observables For a model, which for an input parameter vector x = (x4, ..., x,) gives an output
{B,} in addition to the standard set of conserved ones. We look for the distribution y =y(x) = (yq, ..., Vi), We want to find the “optimal” value of x to describe the
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where Lagrange multipliers F, (t) are determined by the self-consistency Posterior Likelihood  Prior
conditions Bt — (Bt =T B The goal is to find the Maximum a Posteriori (MAP) parameter, i.e. the point in
(Bp)" = (Bu)yer = Triprei(t) By} parameter space which maximizes the posterior distribution.
In this work we assume the following: Model setup:
* A state overpopulated by soft pions is formed at t < 74F°. » Blast-Wave thermal particle generator model with SMASH [3] afterburner
* For 74F0 < 1 < t£9 the collisions conserve the particle number but evolve the » Observables: p,p,n*,n~,K*, K~ spectra in 0-5% Pb-Pb@2.76 TeV collisions
distribution function to a thermal equilibrium distribution. » 200 training and 50 validation data sets
Under these assumptions, the pion number is quasi-conserved and can be » Principal Component Analysis + Gaussian Processes emulator
chosen as a relevant observable. Then, the new self-consistency condition is: * Markov Chain MC to recover posterior distribution
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Here 7, R, T, {1;}, v and n are free model parameters. Figure 2. Marginal and joint marginal posterior probability dlstrlbutlonsI U~ 24 MeV

of model parameters. Blue solid lines indicate medians of the margina
distributions, while blue dashed lines show 90% credible intervals.
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X Feed-down and final state interactions are not taken into account explicitly
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